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INTRODUCTION TO MICROARRAYS 1

Lecture 4: Quantifying Affy Chips

• DAT to CEL

• MAS 4.0 = AvDiff

• dChip

• MAS 5.0

• RMA

• PDNN

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



INTRODUCTION TO MICROARRAYS 2

Starting with the DAT file...

A DAT file consists of a 512 byte header followed by
the 16-bit pixel values: these values are arranged in a
4733 by 4733 square grid.

Features in the dat file are printed in the central
portion of the chip in a grid arrangement. Each feature
is typically several pixels in each dimension.

Affy automatically finds the corners of this grid in the
main image, and partitions things from there.
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DAT to CEL: Quantifying features

Locate a probe pair of interest
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Zoom to a single feature

start with the pixel region
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Trim the feature

trim off the outermost boundary
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Final steps

record the 75th percentile value of the stuff remaining.

Why trim?

Why the 75th, and not the median? or the mean?
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A shift in focus

the above problem, going from the image to the
feature quantification, largely dominated are
discussion of quantification for cDNA arrays.

Here, pretty much everybody uses Affy’s algorithm.
Not so much because it’s perfect, as because it’s
reasonable.

The real challenge here comes from summarizing
multiple measurements of the same thing.

Of course, for this we need data.
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Checking a probeset

Fortunately for us, there’s lots of Affy data on the web.
Today, we’ll be using some data from Todd Golub’s lab
on Leukemia differentiation.

http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi

HL60 undiff PMA ATRA CELfiles.tar 21 CEL files,
Hu6800 chips (aka HuGeneFL).

We’ll look at probeset D11086 at.
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Probeset D11086 at, chip 1

So, how do we summarize this?
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In the beginning: MAS 4.0, aka AvDiff

First, shift to PM-MM differences. (Cross-hyb?)
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AvDiff Processing 1: Flag extremes
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AvDiff Processing 2: Define “ok” Bounds

mean ± 3*sd, computed omitting extremes
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AvDiff Processing 3: Average “ok” Diffs

Not quite what we had before!
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Comments on AvDiff?

It does combine measurements across probes, and
tries to exploit redundancy.

It weights all probes equally.

It works on the PM-MM differences in an additive
fashion.

It can give negative values.

It can omit interesting probes.

It works one chip at a time.
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Using models: dChip

In 2001, Cheng Li and Wing Wong introduced a new
method of summarizing probeset intensities,
“model-based expression indices”, or MBEI. (PNAS,
v.98, p.31-36).

At the crux of their argument was a very simple
observation – the relative expression values of probes
within a probeset were very stable across multiple
arrays.

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



INTRODUCTION TO MICROARRAYS 16

Stability: Our First Chip
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Stability: Two Chips
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Stability: Three Chips

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



INTRODUCTION TO MICROARRAYS 19

Stability: Ten Chips
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So, how to exploit this?

Fit a model: For sample i, and probe j, they posit that

MMij = νj + θiαj + ε

PMij = νj + θiαj + θiφj + ε

Focusing on the PM-MM differences, this model
condenses to one with two sets of unknowns: θi and
φj.
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Fit using several chips at once!
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The next step: φ
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and back to θ
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and after 5 of each
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What do the residuals look like?

Note potential outlying probes!
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Comments on dChip?

By using multiple chips, it can keep all of the probes;
no tossing of the most informative ones.

It captures effects that are multiplicative.

By checking the residuals from the model, it is
possible to identify outliers due to artifacts (that
replication idea again).

Using the hypothesized error model, confidence
bands for the fold change can be computed.

Probe profiles can be computed in one experiment
and used in another.
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The downside(?)s

dChip requires several chips to get a good fit for its
model. It is not a good idea to trust the fits too much if
they are based on just one or two chips.

I’m not convinced that this is altogether a bad thing.

The error model is too simplistic – larger intensity
probes will typically also have larger variances.
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Why did dChip catch on?

The model works pretty well.

The software package was (and remains) easy to
acquire, learn and use. It incorporates several of the
most common tricks that people want to play with
array data.

It could handle large numbers of chips.
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Moving on from there...

Affy did learn some stuff from the modelling process.
In particular, it noted the importance of multiplicative
adjustments and statistical measures with some
means of identifying outliers. They also noted that
negative values just weren’t well received.
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Improving Robustness: MAS 5.0

So, how did they adapt the algorithms?

signal = Tukey Biweight(log(PMj − CTj)).

Test works on the log scale (capturing multiplicative
effects).

Instead of the straight mismatch, they subtract a
“change threshold” which is always lower than the PM
value: no negative numbers.

Use a robust weighting to downweight outliers.
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Checking the fit

It was at this stage that Affy decided it wasn’t going to
fight to have the best algorithm; it would let others play
that game. Indeed, it could reap the benefits of better
algorithms by selling more chips.

To let people test their own models, they posted a test
dataset: The Affy Latin Square Experiment.
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MAS 5.0 vs MAS 4.0

The signal statistic is an improvement on AvDiff.

It tracks nominal fold changes better, and it is less
variable.

What it still doesn’t do is use information across chips.
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Robust Multichip Analysis: RMA

RMA (Irizarry et al, Biostatistics 2003) tries to take the
better aspects of both dChip and MAS 5.0, and to add
some further twists.

As with dChip, RMA is built around a model:

log(PMij −BG) = µi + αj + σεij

(array i, probe j).

What’s different?
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Robust Multichip Analysis: RMA

For starters, it tosses the MM values entirely. They
contend that there are too many cases where MM ¿
PM, and hence including the MMs introduces more
variability than the correction is worth.

Like dChip, it assumes a model for the data, and the
parameters of this model are fit using multiple chips.

Unlike dChip, the random jitter (epsilon) is introduced
on the log scale as opposed to the raw scale. This
more accurately captures the fact that more intense
probes are more variable.
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incorporating other information: PDNN

The above methods are all mathematical, in that they
focus solely on the observed values without trying to
explain those values.

Why should some probes give consistently stronger
signals than others?

What governs nonspecific binding?

In general, these will depend on the exact sequence of
the probe, and the thermodynamics of the binding.
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Fitting the thermodynamics

Recently, Li Zhang introduced the PDNN model.
Unlike dChip and RMA, the parameters for the PDNN
model can all be estimated from a single chip, in large
part because the number of parameters is much
smaller.

He posits a scenario where the chance of binding is
dictated by the probe sequence, and shifts the
mathematical modeling back from the expression
values to the sequences.
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What parameters drive the model?

The base pair at position k in the sequence.

Interactions with nearest neighbors: knowing k, we
must also know what is at k − 1 and k + 1.

The key thing here is that redundancy in terms of the
model parameters can be supplied by multiple
probesets from the same chip.
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Which method is best?

Well, all of the above methods are implemented in
Bioconductor.

we’re going to try a few head to head comparisons
later. In this context, it’s worth thinking about how we
can define a measure of “goodness”. Hmm?
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