
GS01 0163
Analysis of Microarray Data

Keith Baggerly and Kevin Coombes
Section of Bioinformatics

Department of Biostatistics and Applied Mathematics
UT M. D. Anderson Cancer Center

kabagg@mdanderson.org
kcoombes@mdanderson.org

16 September 2004

INTRODUCTION TO MICROARRAYS 1

Lecture 6: R and Glass Microarrays

• Microarray Data Structures

• marray data structures

• limma data structures

• Toward a modular and efficient design

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 2

The threefold way

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 3

Microarray Data Structures

Recall from last time:

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 4

Recall: Affymetrix analysis in BioConductor

• exprSets combine expression data and sample information

• Can be linked in an efficient way to gene information

• AffyBatch objects hold the raw data

• Easy to construct from a directory of CEL files
• Gene annotations updated automatically
• Useful quality control tools

• Structured, modular preprocessing with expresso

• Background correction
• Normalization
• PM correction
• Summarization

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 5

Glass arrays in BioConductor

BioConductor includes two different package bundles to deal with
two-color glass microarrays: marray and limma .

Neither package uses the notion of an exprSet .

In both cases, the design seems to be less flexible and less
modular than the tools for working with Affymetrix arrays.

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 6

marray data structures

The marray package uses four basic classes to hold the data
from a collection of microarray experiments.

marrayInfo : holds sample information or gene information

marrayLayout : describes the geometry of the array

marrayRaw : holds the raw array data

marrayNorm : holds array data after normalization

The primary processing function is maNorm, which allows you to
try a limited number of normalization methods.

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 7

Sample or Gene Information

In marray , the same kind of object (marrayInfo) is used to
hold either sample information or gene information. This object is
a data frame with extra information attached (like the phenoData
objects in an exprSet). The extra information includes longer
descriptive labels for the columns and a character string with any
notes you’d like to attach to the object.

When used to describe genes, the rows correspond to spots on
the array and columns to gene annotations.

When used to describe samples, the rows correspond to
microarrays and columns give information about the samples. In
particular, the columns should identify the samples used in both
the Cy3 and Cy5 channels.

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 8

Things I don’t like about marrayInfo

• No gene-specific or sample-specific tools. Can only tell how to
interpret the object in context.

• Forced combining of Cy3 and Cy5 sample information on the
same row of the sample information

Although this is peeking ahead, it’s also worth noting that every
experimental data set (marrayRaw or marrayNorm) must
contain its own copy of the gene-information marrayInfo
object. This is a terrible design decision. It wastes space (on disk
or in memory) and is impossible to maintain. If the annotations
must be updated, you have to hunt down innumerable copies and
update all of them.

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 9

Geometry of glass microarray designs

As we have seen previously, glass microarrays are typically laid
out in a hierarchical layout, containing a rectangle of grids, each
of which is a rectangle of spots. Also, each grid is spotted on the
array by a different physical pin.

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 10

marrayLayout slots

The marray package uses an marrayLayout object to
describe the geometry using five numbers:

maNgr : number of grid rows

maNgc : number of grid columns

maNsr : number of spot rows

maNsc : number of spot columns

maNspots : number of spots

It is perhaps odd that they store the number of spots, since it
seems to me that it should always be easily computable in terms
of the other four parameters.

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 11

marrayLayout slots

The marrayLayout object may also include three additional
vectors

maSub : a logical vector: are we currently interested in this spot?

maPlate : which plate did the robot get this spot from?

maControls : what kind of material is spotted here?

Metaphors appear to be mixed here: the maPlate and
maControls vectors belong to the array design, and not to the
specific analysis. The maSubobject, however, seems to be an
analysis-specific filter to let you focus on specific genes.

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 12

marrayLayout methods

They include methods to compute the following quantities, but
they do not store them in the object:

maPrintTip : vector of print tips for the spots

maGridCol : vector of grid column locations

maGridRow : vector of grid row locations

maSpotCol : vector of spot column locations

maSpotRow : vector of spot row locations

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 13

More complaints

The design of marrayLayout is a mess.

Every marrayRaw and marrayNorm gets its own copy. This
design has serious maintenance problems. Because they realize
this mistake, they use methods to compute the vector locations.
(Their explanation: storing them takes too much space.) A
drawback of computing them, however, is that this assumes that
the order of the data rows is always the same; however, different
quantification packages do not produce the same row order when
they quantify the spots.

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 14

marrayRaw slots

Raw expression data from glass microarrays is stored as an
marrayRaw object, which contains:

• Four matrices of raw data (maRf, maGf, maRb, maRb) with red
(R) and green (G) foreground (f) and background (b) estimates.

• An optional matrix (maW) of spot quality weights.

• maLayout , containing the array layout

• maGnames, containing the gene information

• maTargets , containing the sample information

As pointed out earlier, including copies of the layout and gene
information is inefficient and hard to maintain.

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 15

marrayRaw methods

maA : vector of log intensities

maM : vector of log ratios

maLR : vector of background-corrected red log intensities

maLG : vector of background-corrected red log intensities

Note that there is no option to perform any form of background
correction other than simply subtracting the values supplied by
the image quantification software.

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 16

marrayNorm slots

Processed expression data from glass microarrays is stored as
an marrayNorm object. These contain copies of the maW,
maLayout , maGnames, and maTargets objects from the raw
source data. In place of the raw measurements, these objects
contain

maA : matrix of average log intensities

maM : matrix of log ratios

maMloc : localization normalization values

maMscale : scale normalization values

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 17

Getting from marrayRaw to marrayNorm

Once we have an object in hand containing raw microarray
measurements, we can simply coerce them into normalized
values. This will do no pre-processing, simply computing the M
and A values from the raw data.

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 18

Normalization methods

In most cases, we want to normalize the data using maNorm
(which is a wrapper around the more general function
maNormMain). The basic function call looks like

> maNorm(my.raw.data, norm=method)

The normalization method must be specified as a character
string, which must be one of the following: ”none”, ”median”,
”loess”, ”twoD”, ”printTipLoess”, or ”scalePrintTipMAD”. Unlike
the approach taken with the Affymetrix arrays, there is no variable
containing a list of normalization methods and no obvious way to
add new methods. The more general method is extensible, but
the way to extend it is poorly documented.

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 19

The marray data cube

Fixed, hard-coded set of metrics (Rf, Gf, Rb, Gb, W).

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 20

limma data structures

The limma package in BioConductor provides a different set of
tools for glass microarrays.

RGList : raw microarray data as a list of arrays containing

• Four matrices, R, G, Rb, Gb, containing measurements.
• Optional components weights , printer , genes ,

targets .

MAList : processed microarray data as a similar list with M and
A components

Note that this is even more wasteful of space by making
innumerable copies of the gene information. . . .

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 21

The limma data cube

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 22

limma normalization methods

The limma package has its own normalization routines (since
tehy use different data structures than marray). Each has
hard-coded option lists that are too painful to enumerate (or
contemplate).

• normalizeBetweenArrays

• normalizeWithinArrays

• normalizeForPrintOrder

• normalizeRobustSpline

• normalizeMedians

• normalizeQuantiles

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 23

Toward a modular and efficient design

In case you hadn’t noticed, I’m considerably less happy with the
BioConductor analysis of glass microarrays than with their
analysis of Affymetrix arrays. To review my main complaints:

• The data structures waste space

• The marray structures make it hard to combine array sets.

• It’s not easy to plug in new processing algorithms
(normalization or otherwise) to compare and contrast them.

• The designs do not use the exprSet structure, so it is hard to
write high-level analysis tools that work on both kinds of arrays.

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 24

An easily extended data cube

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 25

A few design principles

• Array design should be stored in exactly one place.

• Annotations can be updated easily.
• No wasted space storing duplicate copies.

• Must be possible to read data from different quantification
software and different array designs.

• Processing must be modular.

• Easy to figure out what methods are available.
• Easy to add new methods.

• After processing, should get an exprSet .

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 26

How should the two channels be handled?

Two possibilities

1. Each “sheet” is a slide
Slide Cy3 Name Cy5 Name Cy3 Status Cy5 Status
A1 RefMix T1 Reference Cancer
A2 N1 RefMix Healthy Reference

2. Each “sheet” is a separate channel
Slide Channel Sample Name Status
A1 Cy3 RefMix Reference
A1 Cy5 T1 Cancer
A2 Cy3 N1 Healthy
A2 Cy5 RefMix Reference

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 27

The processing pipeline

It should be possible to plug different algorithms in for each step
in the pipeline.

It should be possible to add additional steps.

Ideally, it should be possible from the final object to reconstruct
the processing history (which will be needed for the methods
section of an article based on the analysis!).

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 28

Getting microarray data into R

So far, I have avoided describing how glass array data gets from
the image quantification files into R and/or BioConductor.

The problem: There are lots of different software pacakges for
image quantification. Unlike the Affymetrix world (where
everything starts with the DAT and CEL files), this implies that
there are lots of different formats that need to be understood by a
general microarray analysis package.

In particular, when you construct an object to hold microarray
data, you not only need to know the array design (i.e., the
geometry and the gene annotations for each spot), but you need
to know what software quantified the images.

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 29

Reading data into marray

In marray , they handle this problem by using a variety of “read”
functions:

• read.GenePix

• read.Spot

• read.SMD

• read.marrayRaw

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 30

Reading data into limma

In limma , there is a single “read” function

> read.maimages(files, source=SOMETHING)

This function uses hard-coded text strings to support different
quantification packages; source can be one of

agilent arrayvision genepix
imagene quantarray smd
spot

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 31

Better data input?

Neither marray nor limma makes it easy to add new
quantification packages. With marray , you presumably write
another function of the form read.my.quants , duplicating much
of the existing code to coerce the input adta into the desired
format. In limma , you can’t change the hard-coded strings, but
you can take advantage of the many optional arguments of
read.maimages to construct a custom data reader.

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 32

Better data input?

Conceptually, the problem has a simple form. Quantification data
typicaly arrives as text files in tab-separated values format.
Different manufacturers have differnt names for teh columns that
we care about. All we need to know is

• How to map the manufacturer’s names to our standard names

• How many header lines to skip

• Whether the file contains one or two channels

If we had a description of the quantifier, we could use a single
extendible function like

> my.stuff <- read.arrays(files, quantifier)

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

