GS01 0163 Analysis of Microarray Data

Keith Baggerly and Kevin Coombes
Section of Bioinformatics
Department of Biostatistics and Applied Mathematics
UT M. D. Anderson Cancer Center

kabagg@mdanderson.org kcoombes@mdanderson.org

12 October 2004

Lecture 13: Biological Interpretation

- Introduction
- Primary probe identifiers
 - Sigma-Genosys
 - Agilent
 - Affymetrix
 - IMAGE
- GenBank
- UniGene
- LocusLink
- Batch Resources

Introduction

After analyzing a microarray experiment, you typically end up with a list of "interesting" genes. Today's lecture deals with how to make biological sense of that list.

Keep in mind that the list may be quite long. For example, in our analysis of the prostate cancer data set, we found about 3500 genes that were differentially expressed (along with 3500 potential biomarkers, with an overlap of about 2500).

There are numerous databases (GenBank, UniGene, LocusLink, etc.) that include gene-related information. It can be difficult to keep track of exactly what kind of information each identifier describes. Each of the three kinds of microarrays has a different primary descriptor that tells you what bioloigcal material was placed on the array.

Primary Identifiers

- synthesized oligonucleotide array: These are the Affymetrix arrays. The primary identifier is an Affymetrix probe set ID, which refers to the colletion of 25-mers that form a probe set.
- spotted cDNA array: These are the most common glass microarrays. The primary identifier is an IMAGE clone id, which refers to the actual cDNA clone attached to a vector and propagated in bacteria
- **spotted oligonucleotide array**: Newer glass arrays often spot commercially synthesized 60- or 70-mers instead of cDNA clones. The primary identifier is usually the commercial identifier that corresponds to the actual synthesized sequence.

http://www.sigma-genosys.com

Sigma-Genosys Human Oligo

Sigma-Genosys Product List

Sigma-Genosys Oligo List

http://www.chem.agilent.com

Agilent Microarray

Agilent Human Microarrays

Agilent Product List

Agilent Oligo List

http://www.affymetrix.com

Affymetrix login page

Return to the home page

Main page for NetAffx

Affymetrix Analysis Central

Affymetrix Quick Search

Affymetrix Batch Search

Affymetrix Search Results

Affymetrix Detailed Search Results

Affymetrix Sequence Information

http://image.lnl.gov

IMAGE is integrated into GenBank

GenBank: the common denominator

You may have noticed that all the commercial products map their propietary identifiers to GenBank. GenBank is the primary repository for sequence information.

While the IMAGE ID refers to the actual clone, the corresponding GenBank entry (or entries) describes the actual mRNA sequence.

For Affymetrix, the GenBank entry describes the sequence from which the probe set was constructed.

For Sigma-Genosys or Agilent, the GenBank entry describes the sequence from which the long oligo was selected.

Introduction to Microarrays 26

Entrez Nucleotide

Entrez Tools

Introduction to Microarrays 28

Batch Entrez

Getting a Gene List

```
> extreme <- abs(t.statistics)>6 & tr.stats >
  extreme.genes <- gene.info[extreme,]
> dim(extreme.genes)
[1] 1005
  extreme.genes[1:8,]
          Clone.ID Accession Gene.Symbol
                                            Cluster.ID
       IMAGE: 34849
X24
                        R20379
                                       EEF2
                                              Hs.75309
X27
                       H08440
       IMAGE: 45525
                                             Hs.440382
                                        RFP
X63
                       N74602
      IMAGE: 295831
                                     CGI-26
                                              Hs.24332
X82
                       R74357
                                             Hs.367688
      TMAGE: 143322
X100
                     AA406332
      IMAGE: 753381
                                     SEC23A
                                             Hs.272927
                        W58562
                                   C6orf56
X132
      IMAGE: 341083
                                             Hs.102471
X205
                        T61792
       IMAGE: 78946
                                       PDK4
                                               Hs.8364
X225
      TMAGE: 586831
                     AA130866
                                             Hs.133321
                                      TMIHE
```

Just GenBank

```
> extreme.gb <- extreme.genes$Accession
> write.table(extreme.gb, 'extreme.txt',
+ quote=FALSE, row.names=FALSE, col.names=FALSE)
> write.table(extreme.genes, 'extreme-genes.txt',
+ quote=FALSE, row.names=FALSE, col.names=TRUE,
+ sep='\t')
```

We need the one-column list of GenBank identifiers for a batch search of GenBank. Other tools can use the more general list.

Batch Entrez

Entrez Results

Entrez Results

Why did we only get 1003 results from a batch query with 1005 entries? Probably because two of the GenBank identifiers have been "retired" since the microarray was constructed. This typically happens when someone finds out there was a problem (often vector contamination) with the original sequence entry.

Note: To save the results, click the "Send to" button after first changing the destination to "File".

We can use the results of the search to compare the IMAGE clone IDs supplied with the original array with the current record in GenBank. It is certainly possible that someone (in the distant past) typed one of the numbers incorrectly.

UniGene

GenBank only refers to individual sequences. Because lots of people have sequenced lots of fragments of RNA and entered them into GenBank, a sequence entry is not the same thing as a gene.

UniGene is the NCBI's attempt to organize sequences into coherent clusters that should represent genes.

Critical Fact: UniGene changes regularly. The current sequence data is reclustered about once a month. The presence of new sequence information can change the clusters. As of two or three years ago, as many as 25% of the UniGene cluster assignments changed over the course of a year. One hopes that the rate of change is decreasing.

Introduction to Microarrays 35

UniGene Home Page

Introduction to Microarrays 36

UniGene Results

UniGene Details

UniGene Expression Information

Expression Profile

UniGene Mapping Information

Chromsome Mapping

UniGene Links

LocusLink

The first link out from UniGene is to LocusLink. LocuLik provides a single query interface to curated sequence information and descriptive information about genetic loci. This includes

- official nomenclature (symbol, name)
- aliases
- sequence accession numbers
- phenotypes
- MIM numbers
- UniGene clusters
- homology
- map locations

LocusLink Home Page

Introduction to Microarrays 45

LocusLink Results

Introduction to Microarrays 46

LocusLink Results

LocusLink Results

Online Mendelian Inheritance in Man

Both UniGene and LocusLink create automatic links to OMIM.

OMIM is a curated database of human genes and genetic disorders. It typically includes information about which diseases appear to be linked to specific genes, along with primary references that explain how the gene was sequenced and mapped to specific chromosomal regions.

OMIM Main Page

OMIM Results

OMIM References

Batch Resources

You may have noticed that only GenBank (Entrez-Nucleotide) provided a "batch" option that allowed us to search for an entire list of genes at once. Every other example we have presented works with one gene at a time. That's probably not a good way to deal with 1000 genes.

M.D. Anderson maintains a service called GeneLink to deal with this problem. You can try it at http::

//bioinformatics.mdanderson.org/GeneLink.html

Stanford has a similar tool (that right now is faster) called Source. Check out http://source.stanford.edu.

GeneLink Description

GeneLink Search Page

GeneLink Search Page

Introduction to Microarrays 56

Source Description

Source Search Page

Source Batch Search Page

Introduction to Microarrays 59

Source Results

Source Details

Reprise

- Primary identifiers describe the biological material used as probes
- GenBank accession numbers are a common denominator to start updating gene annotations
- UniGene clusters sequences that represent the same gene
- LocusLink contains curated sequence information about names, mappings, etc
- OMIM contains curated connections between genes and diseases, with references into the literature
- There are batch processing tools to go from a list of GenBank accession numbers through UniGene to LocusLink or OMIM.

Main Question: How do we learn about gene functions, networks, and pathways?

Return to LocusLink

http://www.geneontology.org

GeneOntology

GeneOntology uses controlled vocabularies to create a directed acyclic graph (a generalized tree) that describes the kinds of functions or properties that a gene might have.

The properties are divided into three categories:

- 1. Biological process (what)
- 2. Molecular function (how)
- 3. Cellular component (where)