
GS01 0163
Analysis of Microarray Data

Keith Baggerly and Kevin Coombes
Section of Bioinformatics

Department of Biostatistics and Applied Mathematics
UT M. D. Anderson Cancer Center

kabagg@mdanderson.org
kcoombes@mdanderson.org

2 November 2004

INTRODUCTION TO MICROARRAYS 1

Lecture 18: Clusters, Partitions, and Silhouettes

• K-Means Clustering

• Partitioning Around Medoids

• Silhouette Widths

• Principal Components

• Principal Coordinates

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 2

Review of hierarchical clustering

Last time: we looked at hierarchical clustering of the samples.

Key issues:

• What distance metric (euclidean, correlation, manhattan,
canberra, minkowski) should we use?

• What linkage rule (average, complete, single, ward) should we
use?

• Which clusters should we believe? (bootstrap resampling)

• How many clusters should we believe? (bootstrap)

Is there any reason to believe that a hierarchical structure makes
sense? Today, we’ll look at some other clustering techniques.

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 3

Simulated data

To test some algorithms, we simulated data with 1000 genes and
5 different sample classes containing different numbers of
samples. Here’s a two-dimensional picture of the truth:

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 4

Hierarchical clusters (correlation; average)

Three of the classes (B, C, D) are mostly correct. The other two
classes are less concentrated.

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 5

K-Means Clustering

Input: A data matrix, X, and the desired number of clusters, K.

Output: For each sample i, a cluster assignment C(i) ≤ K.

Idea: Minimize the within-cluster sum of squares

K∑
c=1

∑
C(i)=c,C(j)=c

N∑
`=1

(xi` − xj`)2

• Algorithm:

1. Make an initial guess at the centers of the clusters.
2. For each data point, find the closest cluster (Euclidean).
3. Replace each cluster center by averaging data points that

are closest to it.
4. Repeat until the assignments stop changing.

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 6

K-Means, Take 1

Perfect clustering! (Circles = starting group centers, X = final
group centers)

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 7

K-Means, Take 2

Oops: bad starting points may mean bad clusters!

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 8

K-Means, Take 3

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 9

Local minima may not be global

K-means can be very sensitive to the choice of centers used as
seeds for the algorithm. The problem is that the algorithm only
converges to a local minimum for the within-cluster sum of
squares, and different runs with randomly chosen centers (which
is the default in the kmeans function in R) can converge to
different local optima. You can see which of these three runs is
better:

> sum(kres1$withinss)
[1] 25706.57
> sum(kres2$withinss)
[1] 25736.84
> sum(kres3$withinss)
[1] 25926.12

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 10

Local minima may not be global

There are two ways around the fact that local minima need not be
global.

One is to find better starting seeds for the algorithm. For
example, start with hierarchical clustering. Then cut the tree into
five branches, and use the average of each branch as the
starting points.

Alternatively, you can run the algorithm with many random seeds,
keeping track of the within-cluster sum of squares.

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 11

Multiple runs of the K-means algorithm

kcent <- sample(n.samples, 5)
kres <- kmeans(t(ldata), t(ldata[,kcent])
withinss <- sum(kres$withinss)
for (i in 1:100) {

tcent <- sample(n.samples, 5)
tres <- kmeans(t(ldata), t(ldata[,tcent]))
print(sum(tres$withinss))
if (sum(tres$withinss) < withinss) {

kres <- tres
kcent <- tcent
withinss <- sum(kres$withinss)

}
}

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 12

Can we use other measures of distance?

The K-means clustering algorithm has another limitation. (This is
not the last one we will consider).

As described, it always uses Euclidean distance as the measure
of dissimilarities between sample vectors. As we saw last time
with hierarchical clustering, there are a large number of possible
distances that we might want to use. Fortunately, a simple
adjustment to the algorithm lets us work with any distance
measure.

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 13

Partitioning Around Medoids (PAM)

Input: Data matrix, X, distance d, number of clusters, K.

Output: For each sample i, a cluster assignment C(i) ≤ K.

Idea: Minimize the within-cluster distance

K∑
c=1

∑
C(i)=c,C(j)=c

d(xi, xj)

• Algorithm:

1. Make an initial guess at the centers of the clusters.
2. For each data point, find the closest cluster.
3. Replace each cluster center by the data point minimizing the

total distance to other members in its cluster.
4. Repeat until the assignments stop changing.

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 14

PAM in R

To use PAM in R, you must load another package:

> require(cluster)
> dist.matrix <- as.dist(1-cor(ldata)/2)
> pamres <- pam(dist.matrix, 5)

Unlike kmeans , the implementation of pamonly lets you specify
the number of clusters you want, not the starting point. It also
apparently always uses the same method to choose the starting
point, so it does not help to run the algorithm multiple times. If
their heuristic chooses a poor starting configuration, there is no
way to fix it.

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 15

PAM results

Not very good on our example data...

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 16

How many clusters are there?

Both kmeans and pam require you to specify the number of
clusters before running the algorithm. In our example, we knew
before we stated that there were five clusters. In real life, we
rarely (if ever) know the number of real clusters before we start.
How do we figure out the correct number of clusters?

One way is to run the algorithm with different values of K, and
then try to decide which methods gives the best results. The
problem that remains is how we measure “best”.

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 17

Silhouette Widths

Kaufman and Rousseeuw (who wrote a book on clustering that
describes pam along with quite a few other methods) recommend
using the silhouette width as a measure of how much individual
elements belong to the cluster where they are assigned. To
compute the silhouette width of the ith object, define

a(i) = average distance to other elements in the cluster

b(i) = smallest average distance to other clusters

sil(i) = (b(i)− a(i))/max(a(i), b(i)).

Interpretation: If sil(i) is near 1, then the object is well clustered.
If sil(i) < 0, then the object is probably in the wrong cluster. If
sil(i) is near 0, then it’s on the border between two clusters.

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 18

PAM : two clusters

> pam2 <- pam(dmat, 2)
> plot(pam2)

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 19

PAM : three clusters

> pam3 <- pam(dmat, 3)
> plot(pam3)

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 20

PAM : four clusters

> pam4 <- pam(dmat, 4)
> plot(pam4)

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 21

PAM : five clusters

> pam5 <- pam(dmat, 5)
> plot(pam5)

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 22

PAM : six clusters

> pam6 <- pam(dmat, 6)
> plot(pam6)

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 23

PAM : seven clusters

> pam7 <- pam(dmat, 7)
> plot(pam7)

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 24

> summary(silhouette(pam2))$avg.width
[1] 0.01938651
> summary(silhouette(pam3))$avg.width
[1] 0.02713564
> summary(silhouette(pam4))$avg.width
[1] 0.02904244
> summary(silhouette(pam5))$avg.width
[1] 0.02875473
> summary(silhouette(pam6))$avg.width
[1] 0.02342055
> summary(silhouette(pam7))$avg.width
[1] 0.01862886

In general, we want to choose the number of clusters that
maximizes the average silhouette width. In this case, that means
4 or 5 clusters.

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 25

Using silhouettes with K-means

The silhouette function knows about pamobjects, making it
relatively easy to use. You can use it with other clustering
routines, but you have to supply the clustering vector and the
distance matrix. For example, here are the results for the best
K-means clustering that we found (as measured by the
within-cluster sum of squares).

> euc.distance <- dist(t(ldata))
> ksil <- silhouette(kres$cluster, euc.distance)
> summary(ksil)$avg.width
[1] 0.02453796

Note that the silhouette width is smaller than the one from PAM
using correlation. However, the silhouette plot suggests that
everything is classified correctly:

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 26

K-means: five cluster silhouette

> plot(ksil)

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 27

Silhouettes with hclust

Looking back at the hierachical clustering, we ned to cut eight
branches off (including some singletons) to get down to the
clusters that look real.

> dmat <- as.dist((1-cor(ldata))/2)
> hc <- hclust(dmat, ’average’)
> hsil <- silhouette(cutree(hc, k=8), dmat)
> summary(hsil)$avg.width
[1] 0.08024319

Why does the average silhouette width look so much better for
this method?

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 28

Hierarchical clustering: silhouette with singletons

> plot(hsil)

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 29

The silhouette width

General conclusions: The average silhouette width is only a
crude guide to the number of clusters present in the data. The
silhouette plot seems to be more useful, but requires human
intervention (in the form of “cortical filtering”).

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 30

The Gap statistic

An alternative method for determining the number of clusters
relies on the gap statistic. The idea is to run a clustering
algorithm for different valus of the number K of clusters. Let
W (K) be the within-cluster error. In the case of Euclidean
distance, W (K) is just the within-cluster sum of squares. For
other distance measures, it is the term we minimized in the
description of PAM. Because adding more clusters will always
reduce this error term, W (K) is a decreasing function of K.
However, it should decrease faster when K is less than the true
number and slower when K is greater than the true number.

The gap statistic measures the difference (on the log scale, for
each K) between the observed W (K) and the expected value if
the data were uniformly distributed. One then selects the K with
the largest gap between the observed and expected values.

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 31

Principal Components

You may have wondered how I produced two-dimensional plots of
the simulated data that involved 1000 genes and 53 samples.
The short answer is: I used principal components analysis (PCA).

As we have been doing throughout our discussion of clustering,
we view each sample as a vector x = (x1, . . . , xG) in
G-dimensional “gene space”. The idea behind PCA is to look for
a direction (represented as a linear combination u1 =

∑G
i=1 wixi)

that maximizes the variability across the samples. Next, we find a
second direction u2 at right angles to the first that maximizes
what remains of the variability. We keep repeating this process.
The ui vectors are the principal components, and we can rewrite
each sample vector as a sum of principal components instead of
as a sum of separate gene expression values.

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 32

Data reduction

PCA can be used as a data reduction method. Changing from
the original x-coordinates to the new u-coordinate system doesn’t
change the underlying structure of the sample vectors. However,
it does let us focus on the directions where the data changes
most rapidly. If we just use the first two or three principal
components, we can produce plots that show us as much of the
intrinsic variability in the data as possible.

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 33

Singular value decomposition

The result from linear algebra that allows us to compute principal
components efficiently is called the singular value decomposition
(SVD). This result (whose proof is based on Gram-Schmidt
orthogonalization) tells us that any matrix X with n rows and m

columns can be decomposed as a product

X = UDV T

where U is an n×m matrix with

UTU = Im,

D is a diagonal matrix with m nonnegative entries, and V is an
m×m matrix with

V TV = Im.

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 34

SVD for PCA

The singular value decomposition of X is, by convention,
organized so that the diagonal elements of D are in
non-increasing order:

d1 ≥ d2 ≥ . . . ≥ dm.

Then the columns of U are the principal components and the
product DV T gives the coefficients that write the columns of X

as a sum of columns of U .

If we just have the matrix U , we can recover these coefficients by
a simple matrix multiplication:

UTX = UT (UDV T) = (UTU)(DV T) = ImDV T = DV T .

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 35

Projection into PCA space

The last computation actually tells us how to take any vector in
gene space and rewrite it in terms of the principal components:
just multiply by UT .

Warning: evn though there is a function in R called princomp
that is supposed to compute principal components, it will not
work in the contect of microarrays. The problem is that
princomp wants to decompose the covariance matrix
Σ = XXT , which is a square matrix with size given by the
number of genes. That’s simply too big to manipulate. The linear
algebra that lets us avoid this huge matrix reduces to

XXT = (UDV T)(UDV T)T = (UDV T)(V DUT)

= (UD)(V TV)(DUT) = UD2UT .

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 36

Sample PCA

We have written a version of PCA in R using SVD. The first polot
of our simulated data was produced using the following
commands:

> spca <- sample.pc(ldata)
> plot(spca, split=group.factor)

The plots that added the X’s to mark the K-means centers were
produced with:

> plot(spca, split=factor(kres$cluster))
> x1 <- spca@scores[kcent,1] # start circles
> x2 <- spca@scores[kcent,2]
> points(x1, x2, col=2:6, pch=1, cex=2)
> pcak <- predict(spca, t(kres$centers)) # finish X
> points(pcak[,1], pcak[,2], col=2:6, pch=4)

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 37

Principal Coordinates

Using the first few principal components provides a view of the
data that allows us to see as much of the variability as possible.
Sometimes we have a different goal: we’d like to be able to
visualize the samples in a way that does as good a job as
possible of preserving the distances between samples. In
general, this method is called multidimensional scaling (MDS).

The classical form of MDS is also known as principal coordinate
analysis, and is implemented in R by the function cmdscale .

If you look at the resulting graph carefully, you’ll discover that it is
identical to the principal components plot: classical MDS using
Euclidean distance is equivalent to plotting the first few principal
components.

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 38

Euclidean classical MDS = PCA

> euloc <- cmdscale(euc.distance)
> plot(euloc[,1], euloc[,2], pch=16,
+ col=as.numeric(group.factor),
+ xlab=’Coordinate 1’, ylab=’Coordinate 2’)

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 39

Classical MDS with correlation

> loc <- cmdscale(dmat)
> plot(loc[,1], loc[,2], pch=16,
+ col=1+as.numeric(group.factor),
+ xlab=’Coordinate 1’, ylab=’Coordinate 2’)

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 40

Classical MDS with correlation

Usaing the cloud function in the lattice package, we can also
plot the first three principal coordinates:

> require(lattice)
> loc3d <- cmdscale(dmat, k=3)
> pc1 <- loc3d[,1]
> pc2 <- loc3d[,2]
> pc3 <- loc3d[,3]
> cloud(pc3 ˜ pc1 * pc2, pch=16, cex=1.2,
+ col=1+as.numeric(group.factor),
+ screen=list(z=55, x=-70),
+ perspective=FALSE)

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 41

Three-D

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

