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INTRODUCTION TO MICROARRAYS 1

Lecture 21: Classification I

o CART
e Genetic Algorithms

e Validation of Significance
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Classification and Regression Trees
(CART)

How does CART work?

CART assumes that the axes (genes) have inherent
meaning, and tries to work with them directly as
opposed to forming linear combinations.

This has some potential advantages in terms of
Interpretation, and in terms of specifying a rule.

CART splits the data using a series of binary
decisions.
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CART Questions

How should a split be chosen?

When should we stop splitting?

When we reach a terminal node (a leaf), what class
should we say we’ve found?
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Choosing a Split

Before we’ve done any splitting of the data, we have a
mixture of cases and controls. We can view this as the
root node, and initially we would say that this node has
a certain amount of “impurity” — a node Is said to be
pure If all of the samples at that node are of the same
class.

We want to
define a measure of impurity

find splits that reduce this measure
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Defining Impurity

There are a few different mathematical ways of
defining the impurity of a node; the two most common
are

The entropy or information impurity:

— Z P(class) * logy(P(class))

classes
The Gini iIndex impurity:

1 — Z P(class)?

classes
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Properties of Impurity

Both of these are peaked in the center — nodes that
are split half and half are highly impure.

Similarly, both of these are 0 at the ends — nodes that
are all of one class have no impurity.
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Working with Gini

In the BRCA example, we compute the overall impurity
by computing the impurity of the root node and
multiplying it by the number of samples at that node.
Here, this becomes

S\Z  /14\2
2+d1 - (=) - (22) L —10.18182.
*{ (22) (22) o = 10.1818

/
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Working with Gini

Now let’s say that we can split this node according to
the values of variable x;. There are 13 samples with
r1 < 0, and all 13 of these have nho BRCA2 mutations.
There are 9 samples with z; >= 0, and 8 of these
have BRCA2 mutations.

What is the impurity after this split?
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Working with Gini Nodes

Here, we have to compute the values at the two nodes

and combine them:

1351 (=2
*{ (13

LG

) -}

) -

/

» = 1.77778.

The reduction in impurity that we get by making this
split is 10.18182 — 1.77778 = 8.40404.
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Observations about Splitting

In general, we choose the split giving the biggest
overall reduction in impurity.

It's easler to split large nodes, as even small
reductions in impurity are magnified by the number of

samples involved.

At some point, however, Iit’s not worth it anymore.

If we keep splitting the data until every node is
completely pure, then in general we will have overfit
the data. We want our splits to correspond to things
we think are most likely to persist.
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Ways to Stop Splitting

We can choose to stop if

The best reduction in impurity that we can get is below
a certain threshold value.

The number of samples at a node gets below a
specified threshold value.

Specifying these thresholds is something of a black
art.
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Some R Code

CART can also be viewed as recursive partitioning,
and R uses the function rpart

brcaSamplelnfo$BRCA?2
> brcaSampleIinfo$BRCA?2

] - - - - - - + + + + -

12] - - - - - - - + + + +

_evels: + -

orcaNumbersShort <- brcaNumbers|

pvalsBRCA2 < 0.001,];

library('rpart’);
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Output |

treefitl <- rpart(brcaSamplelInfo$BRCA2 ~ ..$
data.frame(t(brcaNumbersShort)))

> treefitl

n= 22

node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 22 8 - (0.3636364 0.6363636)
2) X914< -0.2607988 9 1 +
(0.8888889 0.1111111) *
3) X914>=-0.2607988 13 O -
(0.0000000 1.0000000) *
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Output I

> summary(treefitl)

n= 22
CP nsplit rel error xerror xstd
1 0.875 0 1.000 1.00 0.2820380
2 0.010 1 0.125 1.25 0.2919371
Node number 1: 22 observations, complexity parar
predicted class=- expected l0oss=0.3636364
class counts: 8 14

probabilities: 0.364 0.636
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Output Il (Split Not Unigque?)

left son=2 (9 obs) right son=3 (13 obs)
Primary splits:
X914 < -0.2607988 to the left,
iImprove=8.404040, (0O missing)
X2456 < 0.1496223 to the right,
iImprove=8.404040, (0O missing)
X2804 < 0.02940068 to the left,
iImprove=8.404040, (0O missing)
X35 < 0.5606404 to the right,
Improve=8.315152, (0 missing)
X501 < 1533854 to the right,
Improve=8.315152, (0 missing)
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Output IV

Surrogate splits:
X2977 < 0.1242674 to the left,
agree=0.955, adj=0.889, (0 split)
X35 < 0.5606404 to the right,
agree=0.909, adj=0.778, (0 split)
X501 < 1.533854 to the right,
agree=0.909, adj=0.778, (0 split)
X952 < -0.2179817 to the left,
agree=0.909, adj=0.778, (0 split)
X1656 < 1.052772 to the left,
agree=0.909, adj=0.778, (0 split)
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Output V

Node number 2: 9 observations
predicted class=+ expected loss=0.1111111
class counts: 8 1
probabilities: 0.889 0.111

Node number 3: 13 observations
predicted class=- expected loss=0
class counts: 0 13
probabilities: 0.000 1.000
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So, does CART work?

Unfortunately, it doesn’t work all that well for most
microarray data experiments.

The problem is simply that by focusing so intently on a
small number of variables (dealing with ties?) that
CART can get misled by random chance splits. This Is
less of a problem if the number of arrays in the
experiment is large (50 or more) such that we are
unlikely to see very large reductions in impurity even
when we start with 1000s of genes.

Cross-validation shows problems.
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Can we fix CART?

By averaging the predictions from several models, we
may come up with more robust algorithms. The
problem is that by averaging, we are combining the
results from many different genes, and the simplicity of
Interpretation iIs somewhat lost.

Useful If we start with a small number of variables.
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Genetic Algorithms (GASs)

Yet one more method for classification.

Ironically (for this course), GAs do not involve specific
genes. Rather, the key idea is to develop a good
classifier through evolution. This process is assumed
to mimic the way in which genes evolved and gained
functionality.

GAs work by specifying an objective function (such as
the fraction of samples correctly classified), and trying
combinations of elements (logical chromosomes) to
see how well they optimize the objective.
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A Simple Example

Say we want to maximize f(x) = z*(1 — z)° over the
interval |0, 1]. We can of course solve for this
analytically; the maximum value of 0.03456 is attained
when x = 0.4, but this Is a toy problem.

We want to represent the number z In terms of binary
pieces, as a “logical chromosome”.

Say we start with a sequence of 30 O’'s and 1's:
00101 10101 01010 10011 11011 01011

Treating this as a binary integer divided by 2°° gives
0.1/77089.
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Testing the Fit

Here, our logical chromosome has “fithess”

£(0.177089) = 0.01747504.

This Is just one random string. Let's say we generate
100 such strings. Then we can compute the fithess for
each of them.
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For Example...

> startgen|1,]
[1] 11011 11010 11000 00111 00001 00111
> startgen|2,]
[1] 01101 01000 00101 OOOOO 00101 00010
> startgen|3,]
[1] 11010 00100 00100 11101 00100 11110

> Xx.vals[1:3]
[1] 0.8698798 0.4142152 0.8165561

> X.fithess[1:3]
[1] 0.001667067 0.034487868 0.004116060
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How do we Evolve?

At each generation, we pick pairs of elements to
“breed”, with the chance of being selected being
linked to the overall fitness in some way.

Given a pair, we line them up, and let them “cross
over’ at some randomly chosen location. So

11011 11010 11000 00111 00001 00111
01101 01000 00101 00000 00101 00010

might produce

11011 11010 11000 00000 00101 00010
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Other Tweaks

Crossover Is typically the main evolutionary driver over
several generations. However, there is typically also a
small chance of something new getting introduced via
mutation — with a small probability, a random element

of the logical chromosome will be “flipped”. So

11011 11010 11000 00111 00001 00111

might produce

11011 11010 11000 10111 00001 00111
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Trying It here

| chose a population of 100 strings of length 30.

The chance of being selected as a member of a pair
for forming a next generation individual was
proportional to

( fit(i) — min( fit) ))2

max( fit) — min( ft

| didn’t bother with mutation, and | let things go for 10
generations.
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GA Fits

Initial Generation
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GA Fits

Second Generation
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GA Fits

Tenth Generation
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What Does This Gain Us?

A GA Is a stochastic (random) search method. It tries
lots of combinations of things, including some that
might not occur to us. It has the potential of including
some types of interactions that might not have
otherwise been spotted.
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Coupled with Arrays

In the microarray context, the logical chromosome can
be used to indicate the presence or absence of a
gene.

Alternatively, iIf we want to work with just a small
number of genes (say 5), the individual
“chromosomes” can be lists of 5 index values.

For each chromosome, we can compute the overall
cross-validated classification accuracy using LDA, or
the distance between the group centers after
standardizing.
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We’'ve Used This Approach

In looking at proteomic data. Proteomic spectra yield
peaks at specific m/z (loosely mass) values. Different
mass peaks ideally correspond to different proteins.

We started with a 506 by 41 matrix of peak intensities
(log transformed) — 506 m/z values, and 41 samples:
24 from patients with lung cancer, and 17 controls.

We then looked for good sets of 1 through 5 peaks.
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What we Did

We used Mahalanobis distance as our fithess function:

MD = (21 — 22)S ™ (Z1 — Z2)

This iIs the multivariate generalization of the two
sample t-test.
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Searching the Space

How we searched

For 1 and 2 peaks, exhaustive search.

For sets of 3, 4 and 5 peaks, use a Genetic
Algorithm (GA).

Some GA detalls

200 logical chromosomes/run, 250 generations.
50 different random starts (3,4,5).

Every run of the GA converged.
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A Typical Solution: Best 4

Median Fithess = 12.023

Counts
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Find the Best Separators

Peaks MD | P-Value | Wrong | LOOCV
12886 2.547 | <0.005 11 11
8840, 12886 | 5.679| < 0.01 5 6
3077,12886| 9.019| <0.01 3 4
74263

5863, 8143 | 12.585| < 0.01 3 3
8840, 12886

4125, 7000 |23.108| < 0.01 1 1
9010, 12886

74263
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Remember the Randomness!

GAs are a form of “directed random search”.

Because of randomness In the algorithm, we can get
different answers every time (and we do).

Because there Is no unigue solution, we need to
verify that the values we find are worth paying
attention to.

© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GSO01 0163: ANALYSIS OF MICROARRAY DATA



INTRODUCTION TO MICROARRAYS 38

How Often Did We Find the Best Peaks?
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Survey the Results

There are 9 values that recur frequently, at masses of
3077, 4069, 5825, 6955, 8840, 12886, 17318, 61000,
and 74263.

P-values are not from table lookups!
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Simulating Significance

We weren’t sure when a Mahalanobis distance would
be “big” here, so we repeated the procedure with

randomly generated data — noise matrices of size 506
by 41, and recomputing the MD values after evolving.

This Is a slightly different use of simulation; earlier we
used simulation to assess whether we were using
cross-validation correctly, and here we’re using it to
assess whether the values we got were big.
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The Challenge

We’'ve specified a dataset, some methods of

classification, and means of assessing classification
accuracy (cross-validation).

Download the dataset yourself.

Find the best genes for comparing BRCA2+ cases
with the others using 2 sample t-tests. Confirm that
there are indeed 49 with p-values < 0.001.

Compute leave-one out cross-validation (LOOCYV)
classification accuracies for LDA, QDA, KNN
(k =1, 3), and DLDA.
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Which is best?




