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Lecture 23: Meta-analysis

• CAMDA and Lung Cancer

• Combining Data Across Studies

• Combining Data Across Chip Types

• Model Checking

• Incorporating Clinical Information

• Testing Significance
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The Longer Title...

Identification of Prognostic Genes, Combining
Information Across Different Institutions and
Oligonulceotide Arrays

in Methods of Microarray Data Analysis IV, Jennifer
Shoemaker and Simon Lin (eds).

aka, the story of our entry in CAMDA 2003.

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



INTRODUCTION TO MICROARRAYS 3

Why Meta-analysis?

The broad problem is simply that people have been
doing microarray experiments for a while now, and in
many cases the raw data is there to be had.

The hope is that this information can be leveraged by
combining the information from multiple studies in
such a way that we can (a) double-check the
robustness of the initial results or (b) say something
qualitatively new.

This latter category can be subdivided: results that
could have been found initially, and results that stand
out only with the combination.
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CAMDA 2003

Meta-analysis was the theme of the 2003 CAMDA
competition. Before this competition, the entrants had
been supplied with two datasets and required to
analyze one. In this case, the entrants were supplied
with four datasets, and the requirement was to
combine results from at least two.

The four datasets all involved microarray profiling of
lung cancers (we’re a bit uneasy about contrasting
across organ types for now).
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Goals in the Original Papers

In all four cases, the goal had been to indentify genes
whose expression levels were correlated with clinical
outcome, defined here as longer survival. Thus, all
four datasets also have associated clinical information
about survival and various patient characteristics.

Our motivation for looking at this was straightforward:
we’re at a cancer center, we want to improve our
knowledge about how the cancer works.

We decided to stick with the idea of trying to associate
gene expresssion with clinical outcome.

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



INTRODUCTION TO MICROARRAYS 6

The Papers Themselves

Harvard: (Battacharjee, et al. PNAS 2001) 186
patients (139 ADC), Affymetrix U95Av2 arrays
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The Papers Themselves

Harvard: (Battacharjee, et al. PNAS 2001) 186
patients (139 ADC), Affymetrix U95Av2 arrays

Michigan: (Beer, et al. Nature Med. 2002) 86 patients
(all ADC), Affymetrix arrays HuGeneFL

Stanford: (Garber, et al. PNAS 2001) 62 patients (35
ADC), Glass arrays

Ontario: (Wigle, et al. Cancer Res. 2002) 39 patients
(19 ADC), Glass arrays
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How Do We Choose?

Which datasets should we combine?

Break this down into related questions:

1. What do we want to do with the data?

2. Does it make sense to try to combine the data?

3. How is this combination to be achieved?
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What do we want to do?

We want to use expression levels to predict outcome.
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What do we want to do?

We want to use expression levels to predict outcome.

But

a. as stated, this doesn’t fully exploit the other clinical
information available.

b. this is what the individual groups did, so the main
gain to be had would be from increasing the sample
size.

We’d like to expand the problem, and in so doing
make some broader gains available.
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The new objective

Find genes whose expression levels supply
information about survival above and beyond that
which can be derived largely from the clinical
covariates.

This explicitly incorporates the clinical covariate
information into the context of the problem. By doing
something new, we get some additional information of
a type that the individual studies did not work with.
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What datasets make sense?

Given the question, what data can we work with?

In terms of predicting survival, one factor that we know
will be present is the difference between institutions.

If the patient populations are qualitatively different in
other ways as well it will be harder to make a valid
comparison.
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Check Rough Clinical Equivalence

Some aspects in which we seek similarity:

type of tumor: adenocarcinoma, SCLC, etc

stage of tumor: high grade/low grade?

length of followup

e.g. – The majority of the tumors in all cases are
adenocarcinomas, and the other subtypes are very
unevenly distributed.
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Check Rough Clinical Equivalence

Some aspects in which we seek similarity:

type of tumor: adenocarcinoma, SCLC, etc

stage of tumor: high grade/low grade?

length of followup

e.g. – The majority of the tumors in all cases are
adenocarcinomas, and the other subtypes are very
unevenly distributed.

Focus on adenocarcinomas.
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What else do we see in the datasets?

The Toronto dataset had comparatively short followup
in a smaller number of cases – 3 events in 18 patients
– so we we’rent sure it could be reliably compared.
There were also difficulties in finding a consistent
mapping of the gene identifiers (which turned out to be
IMAGE clone ids). We decided not to use this one.

The Stanford dataset, by contrast, had a large number
of patients with metastases (stage IV tumors) – 12
cases in 30 patients. Unsurprisingly, the survival
profiles looked worse. We decided not to use this one.
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The others were just right...

Similar gender/age/stage/smoking status

Similar follow-up time distributions

Different survival distributions

These are significantly different using standard tests,
such as log rank tests or proportional hazards models
(more on the latter below).

We decided to work with these two datasets, and to
use a term for “institution effect” in the model.
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The survival picture
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Quantitative Combination?

So, how can we combine the gene expression data?

Can we put it on the same scale?

Are the two chips measuring the same things?

Initially, the answer to this last question is NO. The two
different Affy chip types involved, the HuGeneFL
(Michigan) and the U95Av2 (Harvard) have (a) used
different definitions of what constitutes a gene, and (b)
used different sets of probes (25-mers) to query the
expression levels of said genes.
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Caveat Emptor

Thus, even though Affymetrix has supplied a list
matching probesets from one chip type to probesets
on another, the quantitative values that we get will not
be directly comparable.
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What is directly comparable?

Well, if the individual 25-mer probes are the same, it’s
reasonable to see those as querying the same
biological targets.

Hence, our first step is to identify all of the 25-mers
that are “common” to the two chip platforms, and say
that when we focus at this level, the measurements
may be the same across the two chip platforms.
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What is a gene?

Now we have common 25-mers. But which sets of
25-mers constitute genes? The sets used for the
HuGeneFL assembly? For the U95Av2 assembly?
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What is a gene?

Now we have common 25-mers. But which sets of
25-mers constitute genes? The sets used for the
HuGeneFL assembly? For the U95Av2 assembly?

The above is a trick question. Neither!

When Affy assembled their probesets, they used what
they thought to be the best current guesses as to what
constituted gene sequences – the sequences
associated with different Unigene clusters.

These clusters change over time, as our knowledge of
gene structure evolves.
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Our approach

In order to use the best and most recent data, we take
the common probe sequences, and blast them against
the latest build of Unigene. This allows us to assemble
our own “pseudo-probesets” which are likely to be
more accurate than Affy’s own.
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A caveat

Well, somewhat. While we are measuring the same
stuff, we can run into difficulties with the fact that the
number of probes we have that are (a) common to the
two chip types and (b) associated with the most recent
definition of a gene is variable. The number of probes
in a probeset (PM only) was 20 for the HuGeneFL and
16 for the U95Av2. Most of our pseudo-probesets
have fewer, and we set a lower limit for acceptance of
3 probes.
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Is this reasonable?

This lower limit is somewhat ad hoc, but reflects the
fact that there are still bits of “crud” that can hit the
chips, and these distortions hit individual probes.
Thus, there is a non-negligible chance that one probe
may be bad; hence more than one is required. In
order to decide which of a disagreeing set is more
likely, we need a tiebreaker, hence more than two.

All told, when we first assembled the combined list we
got 4,101 pseudo-probesests of more than 3 probes to
work with.
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Our probeset sizes
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Quantitative Combination?

Ok, now we have probesets.

Armed with probesets, we can quantify the gene
expression levels across chips.

This does require some new coding of the fitting
routines, since R works with the standard CDF files,
and we’re redefining these mappings.

Given shared probes, we can use our method of
choice, be it dChip, RMA, or PDNN (we chose the last
one here).

Ok, we have an idea how to quantify all of the chips.
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Should we use all of the chips available?

Some of the Michigan chips (L54, L88, L89, and L90
respectively here) show substantial spatial distortion.
We want to omit these.
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Data Problems

Similarly, some of the Harvard samples were run
multiple times, and the average quantifications were
used in the initial study. However, samples were run
again if the initial sample “looked odd”, so a safer
procedure would be to simply use the most recent run
of a given Harvard sample.

After filtering out the “odd samples”, we were left with
200 total: 124 from Harvard, 76 from Michigan.
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Some gene filters

Remove the weak-signal genes from consideration.
Here, this was arbitrarily defined as excluding the half
of the genes with the lowest median expression
across samples. This step could be improved.

Normalized the chips to have a common mean and
standard deviation across genes (using PDNN
quantifications to start).

This filter restricts our attention further to 2,055 genes.
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Does the approach work?

Test 1: variability across samples within a chip type
(U95Av2 here); both full and partial probesets.
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What are we seeing?

If there is a problem with reproducibility introduced by
the method, we would expect to see several spots
above the main diagonal, corresponding to more
variability when the partial probesets are used.

As it happens, we didn’t see a problem, and if
anything the variability went the other way. One
potential reason for this stability is the way the probes
were chosen for the latter chips – Affy only retained
the “good” probes from the earlier chip, and these are
more likely to be stable.
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Another test

Test 2: rank ordering of expression levels
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What we’re seeing

Test 2: look at the rank ordering of expression levels
across samples using both the full and partial
probesets.

If we’re capturing the signal adequately with just the
partial probesets, the rank correlation the two
quantifications should be quite high.
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Another test, part 2
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The new details

Fitting a loess curve to the data confirms that the
correlations are quite high for the most part, but get
worse if the standard deviation of the gene expression
levels is low.

This actually makes sense. If the sd is low, the gene
expression values are almost the same, and in these
cases small fluctuations due to the method can have
the most dramatic effects. However, these problematic
genes are likely among the least interesting ones from
our point of view in that we will not see very big (and
hence easily measured) changes.
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Another test, part 3
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Finishing off the correlation filter

Given that we can identify the most problematic cases,
we choose to filter these as well, excluding all genes
where the standard deviation of gene measurements
across samples is < 0.2 or where the rank correlation
between full and partial measurements is < 0.9.

This further filtering reduces our list to 1,036 genes.
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What about average expression?

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



INTRODUCTION TO MICROARRAYS 36

What about average expression?

We wanted to do a quick check now and see if the
quantification values that we’re getting overall tend to
agree across institutions. The mean expression levels
look quite similar (tightly clustered about the main
diagonal. This would probably have shown more
clearly using an MA plot.
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What about expression variability?
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What about expression variability?

The amount of variation in expression levels also
appears pretty good across institutions, with a
possible slight bias – the Michigan samples are more
variable for 61% of the probesets.
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So you want to find a gene...

In order to find genes that provide information above
and beyond what is supplied by the clinical covariates,
we fit Cox proportional hazards models

One of the earlier studies (Michigan) fit univariate Cox
proportional hazards models to test the association
between gene expression and outcome.

Our approach differs in that we fit a multivariate
model. The terms we include in our model are study,
age, stage, and 1 gene (so we’re fitting 4 variables
each time).
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Computing p-values

We used a permutation based approach to compute
p-values. What we permuted were the allocations of
gene expression values to the individuals (each
individual keeps the same study classification, age,
and stage throughout). For each gene, 100000
permutations were performed, and the p-value was
defined as the empirical proportion of test statistics for
the gene coefficient that were bigger (in absolute
value) than the value observed.
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Belt and suspenders...

We also checked the p-values produced by two other
methods: a model-dependent Likelihood Ratio Test
(LRT), and a bootstrap test (like the permutation test,
only the expression values are sampled with
replacement.

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



INTRODUCTION TO MICROARRAYS 42

Cox Proportional Hazards

So, what is a Cox Proportional Hazards model?

In survival analysis, we often speak of the hazard
function, which gives the instantaneous “hazard” of
death for an individual, defined as the chance that the
individual will die in the very next time interval given
that they’ve already survived this far.

Hazard: λ(t) ∼ Prob(X < t + ∆t|X > t)
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The Cox Model

The Cox model introduces the covariates by assuming
that these serve to alter the hazard function in a
mulitplicative fashion:

Cox Model: λi(t) = λ0(t) exp(Xiβ)

This multiplicative assumption means that the
adjustment does not change over time, and means
that the relative hazards of two individuals can be
defined farily simply:

λi(t)/λk(t) = exp((Xi −Xk)β).

exp(β) = change in hazard per unit change in X.
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Results using only clinical data:

Factor β exp(β) Z p-val
Study 0.67 1.95 2.73 0.0062
Michigan = 0
Harvard = 1
Age 0.03 1.03 2.60 0.0094
Stage 1.53 4.61 6.61 < 0.000000001
Early (1-2) = 0
Late (3-4) = 1

stay young...
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How many genes should we keep?

Ok, we have genes and associated p-values. How
many do we decide to investigate?

Identifying Prognostic Genes: use the BUM Method

No prognostic genes → pvals Uniform

Prognostic genes → smaller pvals

Fit Beta-Uniform mixture to histogram of p-values –
“BUM” method (Pounds and Morris, 2003
Bioinformatics)

Method can be used to identify prognostic genes while
controlling FDR
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Calibrating what to expect

start by using Wilcoxon tests on gene expression
levels to identify genes strongly associated with stage.
We expect to see several genes showing up here.

Results: Stage-Related Genes

Many genes linked with stage

71 genes flagged using FDR < 0.05 (p < 0.0064)

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



INTRODUCTION TO MICROARRAYS 47

The picture with stage diffs
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Checking what we really want to know

Results: Prognostic Genes

Evidence of some prognostic genes

26 flagged using FDR < 0.20

Note that we have a lot fewer genes here than for
stage. Most of this is due to the restriction that these
genes should provide information above and beyond
that provided by the clinical covariates.
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The prognostic picture
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What about these genes?

Only 1 also flagged for stage

0 in top 100 genes in Michigan paper

1 cited in Harvard paper

PubMed search on the list of 26 – 14 found to be
linked to lung cancer (9/14), cancer in general, or
other lung disease.
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A partial table

Rank Gene β p pStage Function
1 FCGRT -2.07 ¡0.00001 0.154 Induced by IF-g in treating SCLC
2 ENO2 1.46 0.00001 0.282 Marker of NSCLC
4 RRM1 1.81 0.00002 0.321 Linked to survival in NSCLC
8 CHKL -1.43 0.00010 0.979 Marker of NSCLC
11 CPE 0.72 0.00031 0.088 Marker of SCLC
12 ADRBK1 -2.20 0.00044 0.484 Co-expressed with Cox-2 in PUC
16 CLU -0.52 0.00109 0.014 Marker of SCLC
20 SEPW1 -1.29 0.00145 0.028 H202 cytotox. in NSCLC cell lines
21 FSCN1 0.66 0.00150 0.082 Marker of invasiveness in Stage 1 NSCLC
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A partial table

Rank Gene β p Function
1 FCGRT -2.07 <0.00001 Induced by IF-g in treating SCLC
2 ENO2 1.46 0.00001 Marker of NSCLC
4 RRM1 1.81 0.00002 Linked to survival in NSCLC
8 CHKL -1.43 0.00010 Marker of NSCLC
11 CPE 0.72 0.00031 Marker of SCLC
12 ADRBK1 -2.20 0.00044 Co-expressed with Cox-2 in PUC
16 CLU -0.52 0.00109 Marker of SCLC
20 SEPW1 -1.29 0.00145 H202 cytotox. in NSCLC cell lines
21 FSCN1 0.66 0.00150 Marker of invasiveness in Stage 1 NSCLC
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and some more

Rank Gene β p pStage Function
3 NFRKB -2.81 0.00001 0.058 Amplified in AML
7 ATIC 1.81 0.00009 0.771 Fusion partner of ALK which defines subtype of ALCL
13 BCL9 -1.64 0.00069 0.057 Over-expressed in ALL
15 TPS1 -0.64 0.00107 0.882 Associated with pulmonary inflammation
25 BTG2 -0.75 0.00232 0.726 Inhibits cell proliferation in primary mouse embryo fibroblasts lacking functional p53
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and some more

Rank Gene β p Function
3 NFRKB -2.81 0.00001 Amplified in AML
7 ATIC 1.81 0.00009 Fusion partner of ALK which

defines subtype of ALCL
13 BCL9 -1.64 0.00069 Over-expressed in ALL
15 TPS1 -0.64 0.00107 Associated with pulmonary

inflammation
25 BTG2 -0.75 0.00232 Inhibits cell prolif in

primary mouse embryo
fibroblasts lacking
functional p53
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Discussion

All in all, the results worked out rather well. We found
some novel things, and they seem to make sense.

Further, some of our gains could not have been
realized using just one of the two studies. Of the 26
we found, we would only find 8 using the Harvard data
alone, or 1 using the Michigan data alone.

Many of our gains derive from the fact that we are
combining the data at the raw (CEL file) as opposed to
summary (probeset quantification) levels. The
downside is that this is harder. The upside is that the
biology is there.
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