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Lecture 9: Differential Expression

• Student’s t-test

• Simulating nothing

• Family-wise error rate

• Permutation tests

• Is FWER too conservative?

• Beta-uniform mixture model
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Class Comparison

Perhaps the most common use of microarrays is to determine
which genes are differentially expressed between prespecified
classes of samples. In general, we refer to this as the class
comparison problem. In this lecture, we start looking at the
simplest case:

• Given microarray experiments on

• NA sample of type A

• NB sample of type B

• Decide which of the G genes on the microarray are
differentially expressed between the two groups.
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Student’s t-test

In many cases, we analyze microarrays starting with the “one
gene at a time” approach. That is, we first look for a reasonable
way to analyze the same problem when we only have one gene,
and then figure out how to adapt that method to thousands of
genes.

The one-gene version of the class comparison problem with two
classes simply asks, “is this gene different in the two classes?” A
classic analytical method is Student’s t-test. We start by
estimating the mean and standard deviation in both classes:

x̄A =
1

NA

NA∑
i=1

xi, s2
A =

1
NA − 1

NA∑
i=1

(xi − x̄)2.
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Weighted difference in means

Next, we pool the estimates of standard deviation from the two
groups:

s2
P =

(NA − 1)s2
A + (NB − 1)s2

B

NA + NB − 2
.

The two-sample t-statistic is the difference in means, weighted by
the pooled estimate of the standard deviation and the number of
samples:

t =
x̄B − x̄A

sP

√
1/NA + 1/NB

.

Question: Why not just use the difference in means?
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Microarray aside: which scale is best?

Before answering the question, we offer a slight reinterpretation.
Most (but not all) analysts believe that microarray data should be
transformed by computing logarithms before testing for
differential expression. The key mathematical fact supporting this
belief is that the logarithm turns multiplication into addition:

log(xy) = log(x) + log(y).

In particular

log(2x) = log(x) + log(2), log(x/2) = log(x)− log(2).

Differences on the log scale can be interpreted as “fold change”
on the original scale of the data. Increases and decreases by the
same fold change are treated equally on the log scale.
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Why the standard deviation matters
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Why the standard deviation matters
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Why the standard deviation matters
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T-statistics

Three ways to get a larger t-statistic:

• Bigger difference in means

• Smaller standard deviation

• More samples
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What about p-values?

Null hypothesis: The difference in mean expression between the
two groups is zero.

Two-sided alternative hypothesis: The difference in mean
expression is non-zero.

P-value = probability of seeing a t-statistic this extreme under the
null hypothesis = area in both tails of the distribution.

Interpretation: if you repeat the same experiment many times
(with the same number of samples in the two groups), the p-value
represents the proportion of times that you would expect to see a
t-statistic this large.

BUT: Computing a t-statistic for each gene on a microarray is like
performing the same experiment many times.
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Simulating nothing

We simulated a microarray data set with no differences:

n.genes <- 10000
n.samples <- 20
an <- n.samples/2
bn <- n.samples/2
type <- factor(rep(c(’A’, ’B’), times=c(an, bn)))
data <- matrix(rnorm(n.genes * n.samples),

nrow=n.genes)
am <- apply(data[, type==’A’], 1, mean)
bm <- apply(data[, type==’B’], 1, mean)
av <- apply(data[, type==’A’], 1, var)
bv <- apply(data[, type==’B’], 1, var)
sp2 <- ((an-1) * av + (bn-1) * bv)/(an+bn-2)
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The t distribution

t.stat <- (bm - am)/sqrt(sp2)/sqrt(1/an+1/bn)
hist(t.stat, breaks=100, xlab=’’)
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P-values are uniformly distributed

p.val <- sapply(t.stat, function(tv, df) {
2* (1-pt(abs(tv), df))

}, an + bn - 2)
hist(p.val, breaks=100, xlab=’’)
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How significant is nothing?

> sum(p.val < 0.05)
[1] 505
> 0.05 * n.genes
[1] 500
> sum(p.val < 0.01)
[1] 109
> 0.01 * n.genes
[1] 100

If there are no real differences, and if we can treat different genes
as though they are “replicates” of the same experiment, then

1. Number of genes with p < α is approximately αN .

2. The distribution of p-values is uniform.
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Statistical error types

Statisticians (on average) are obsessed with errors. They also
tend to use circumlocutions that make it more difficult for
non-statisticians to understand them. For example, “rejecting the
null hypothesis” means “calling a gene differentially expressed”.

Test Result Truly Different Truly Unchanged
Positive True Positive (TP) False Positive (FP)

Type I Error
Negative False Negative (FN) True Negative (TN)

Type II Error

P-value = Prob(Type I Error)

To control Type II Errors (FN), you have to increase the sample
size to ensure enough power to detect the true differences.
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Family-wise error rate (FWER)

FWER = probability of getting at least one FP when performing
many statistical test = probability of making at least one mistake

Bonferroni adjustment: To achieve FWER ≤ α when looking at
G genes, restrict on a per-gene basis to p ≤ α/G.

> bonferroni <- 0.05/n.genes
> bonferroni
[1] 5e-06
> sum(p.val < bonferroni)
[1] 0
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What happens with real data?

Reference: Lapointe et al. Gene expression profiling identifies
clinically relevant subtypes of prostate cancer. Proc Natl Acad
Sci USA. 2004; 101: 811–816.

This paper uses two-color microarrays to study prostate cancer.
Processed with local background subtraction, loess
normalization, then taking log ratios with the reference channel.

• 41 samples of apparently normal prostate

• 62 samples of prostate cancer

• 9 samples of lymph node metastases from prostate cancer

We randomly selected ten samples of normal prostate and ten
samples of prostate cancer, and performed two-samples t-tests.
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Real p-values

There seems to be an overabundance of small p-values, causing
the distribution to differ considerably from uniform.
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> n.genes <- nrow(data)
> n.genes
[1] 42129
> sum(p.val < 0.05) # observed
[1] 6316
> 0.05 * n.genes # expected
[1] 2106.45
> sum(p.val < 0.01) # observed
[1] 2931
> 0.01 * n.genes # expected
[1] 421.29
> bonferroni <- 0.05/n.genes
> bonferroni
[1] 1.186831e-06
> sum(p.val < bonferroni)
[1] 42
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Simulating something

We also simulated two data sets with differences:

1. Data Set I

• 10 arrays per group, 2000 genes per array
• Gene expressions in each group are independent, N(µ, 1).
• In group A, take all µA = 0.
• 50 genes are different, with |µA − µB| ∼ 5 ∗Beta(2, 8).

2. Data Set II

• 10 arrays per group, 10, 000 genes per array
• Mean expression µA ∼ Exp(1/20).
• 100 genes are different, with µA/µB ∼ 1 + 9 ∗Beta(3, 7).
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Bonferroni Correction: Results

• Data Set I (normal model)

• Truth: 50 genes differ out of 2000
• With α = 0.05, makes 21 positive calls, 21 correct.

• Data Set II (exponential + noise)

• Truth: 100 genes differ out of 10, 000
• With α = 0.05, makes 25 positive calls, 25 correct.

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



DIFFERENTIAL EXPRESSION 20

Begining to assess the model

A key assumption of the Bonferroni approach is that a uniform
distribution adequately describes the p-values when there are no
differntially expressed genes present.

We can start testing how good the uniform model is by
performing a permutation test. In this case, we simply scramble
the labels on the samples.

In the prostate example, we have ten normal and ten cancer
samples. We choose ten samples at random to call “normal”, and
call the other ten “cancer”, and we repeat the analysis with the
two-sample t-test.
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P-values for scrambled sample labels

Nearly uniform, with a slight bulge near p = 0.01. This might be
attributable to an imbalance of “truth” in the permuted groups.
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Scrambled data is insignificant

> sum(p.val < 0.05) # observed
[1] 2257
> 0.05 * n.genes # expected
[1] 2106.45
> sum(p.val < 0.01) # observed
[1] 406
> 0.01 * n.genes # expected
[1] 421.29
> sum(p.val < bonferroni)
[1] 0
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Should we believe the p-values?

There is another potential difficulty with using the Bonferroni
approach: in order to get a significant gene, we need extremely
small p-values. That means we have to very accurately estimate
the tails of the distribution, which is a fairly difficult thing to do
unless one of two fairly unlikely things happens:

1. The number of samples is extremely large, or

2. The distribution of expression values is almost perfectly
described by a normal distribution.

We can use permutations to get around the second problem, but
that only makes the first problem worse.
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Dudoit’s permutation p-values

Reference: Dudoit et al. Statistical methods for identifying
differentially expressed genes in replicated cDNA microarray
experiments. Statistica Sinica, 2004; 12: 111-139.

• Perform t-test for each gene g and sort the absolute t-statistics,
|tg|.

• Repeat many times:

• Randomly permute sample labels.
• Compute new t-statistics

• Adjust p-values based on empirical joint distribution of
t-statistics to control FWER.
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Adjusted p-values, Data Set I
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Adjusted p-values, Data Set II
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Dudoits Method: Results

• Data Set I (normal model)

• Truth: 50 genes differ, out of 2000.
• With α = 0.05, makes 21 positive calls, 21 correct.

• Data Set II (exponential + noise)

• Truth: 100 genes differ, out of 10, 000
• With α = 0.05, makes 21 positive calls, 21 correct.
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Is FWER too conservative?

1. In the prostate data set, Bonferroni with FWER ≤ 5% flagged
42 genes.

2. With an uncorrected p ≤ 1%, the model underlying the
Bonferroni correction predicts only 421 genes, but we actually
observe 2931.

3. With an uncorrected p ≤ 5%, the model underlying the
Bonferroni correction predicts only 2106 genes, but we actually
observe 6316.

Are there only 42 differentially expressed genes among the
42, 129 spots on this array, or are there 2510 = 2931− 421? Or
maybe even 4210 = 6316− 2106?
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Opportunity cost

The Bonferroni correction only considers Type I Errors.
Microarray experiments, however, are often used for discovery.
Findings are usually confirmed by performing additional
experiments (typically, real-time PCR). In some cases, the
“opportunity cost” of missing out on a discovery (by making a
Type II Error) is greater than the “validation cost” of finding some
false positives (Type I Errors) in your list of genes.

Like anything else, there are trade-offs. By choosing a smaller
significance cutoff for the p-values, you get fewer false positives
but more false negatives. By choosing a larger cutoff, you get
more false positives and fewer false negatives.
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The false discovery rate

FDR = FP/(TP + FP ) = fraction of false positives among all
genes called differentially expressed by the test. Here is a crude
way to estimate FDR: Assume the uniform model for p-values
holds under the null hypothesis. The the expected number of
false discoveries at a given p-value cutoff is pG. If the total
number of discoveries is V , then we can estimate FDR = pG/V .
In the prostate cancer example, this gives

• When p = 0.05, FDR = 0.3334 = 2106/6316.

• When p = 0.01, FDR = 0.1436 = 421/2931.

This estimate is not very good; it overestimates the number of
errors by not accounting for the fact that there seem to be some
true discoveries.
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Significance analysis of microarrays (SAM)

Reference: Tusher et al. Significance analysis of microarrays
applied to the ionizing radiation response. PNAS, 2001; 98:
5116–5121.

• Compute modified t-statistics (increase σ to minimize
coefficient of variation across the array).

• Recompute t-statistics based on balanced permutations (each
group equally represented) of the sample labels.

• Decide on significance cutoff based on quantile-quantile plot of
observed versus expected t-statistics.

• Estimate FDR from the permutations.
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SAM, Data Set I
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SAM, Data Set II
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SAM: Results

• Data Set I (normal model)

• Truth: 50 genes differ, out of 2000.
• With FDR = 0.10, makes 32 positive calls, 30 correct.

• Data Set II (exponential + noise)

• Truth: 100 genes differ, out of 10, 000
• With FDR = 0.10, makes 41 positive calls, 37 correct.

Detects more true positives in simulated data than Bonferroni or
Dudoit, at some cost in false positives. Like Dudoit’s method, it is
computationally intensive.
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Beta-uniform mixture model (BUM)

Reference: Pounds and Morris. Estimating the occurrence of
false positives and false negatives in microarray studies by
approximating and partitioning the empirical distribution of
p-values. Bioinformatics, 2003; 19: 1236–1242.
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Idea: Model the p-values as a mixture of a uniform distribution
and a beta distribution. Estimate mixture parameters. Obtain
estimates of TP, FP, FN, TN as a function of significance cutoff.
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BUM, Data Set I
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BUM, Data Set II
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BUM: Results

• Data Set I (normal model)

• Truth: 50 genes differ, out of 2000.
• With FDR = 0.10, makes 33 positive calls, 31 correct.
• Estimates that 2.8% of genes are different (truth = 2.5%)

• Data Set II (exponential + noise)

• Truth: 100 genes differ, out of 10, 000
• With FDR = 0.10, makes 40 positive calls, 37 correct.
• Estimates that 0.7% of genes are different (truth = 1.0%)

Results equivalent to SAM, with much less computation.
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BUM results on prostate data

We have already seen the histogram, and the fit of the
beta-uniform mixture.

• With FDR < 0.01, calls 427 genes differentially expressed.

• With FDR < 0.05, calls 1513 genes differentially expressed.

• With FDR < 0.10, calls 2727 genes differentially expressed.

Overall, BUM estimates that 26% of the genes are differentially
expressed at some level. (That’s more than 10, 000 genes!)
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