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INTRODUCTION TO MICROARRAYS 1

Lecture 10: Rank-based tests of differential
expression

• Wilcoxon rank-sum test

• Empirical Bayes

• The Tail-Rank Test

• Looking at the results
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Nonparametric tests

The t-test for differences in mean expression between two groups
of samples assumes that the measurements in each group are
normally distributed. If this assumption is far from the truth, then
the t-statistics and p-values you get may be meaningless.
(Actually, departures from normality tend to increase the Type II
error, especially when the sample size is small.)

Statistically, the dispute over log-transforming microarray data
reduces to whether a normal distribution better describes the
data on the raw scale or on the log scale.

We can avoid this problem entirely by using a statistical test that
does not assume anything about the distributions. These tests
are usually called distribution-free or nonparametric.
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Wilcoxon rank-sum test

The most common nonparametric test for a difference in mean
expression is the Wilcoxon rank-sum test, which is also known as
the Mann-Whitney test.

We assume that we have sample measurements from two
groups:

X1, X2, . . . , XnX

Y1, Y2, . . . , YnY

We then rank these values from smallest to largest, getting
something like

X3 ≤ Y5 ≤ X1 ≤ X10 ≤ Y1 ≤ · · · ≤ X2

1 2 3 4 5 nX + nY
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Computing rank-sums

Next, we compute a statistic W by summing the ranks of the
measurements from the first group. In our example,

W = 1 + 3 + 4 + · · ·+ (nX + nY ).

W is always an integer, and it is easy to compute its minimum
and maximum values. The minimum occurs when all the X
values are smaller than all the Y values. Thus, all the X values
are at the beginning of the list, and we have

W ≥ 1 + 2 + · · ·+ nX =
nX(nX + 1)

2
.
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The maximum occurs when all the X values come after all the Y
values, giving

W ≤ (nY + 1) + (nY + 2) + · · ·+ (nY + nX)

= nXnY + (1 + 2 + · · ·nX)

= nXnY +
nX(nX + 1)

2

=
nX(2nY + nX + 1)

2
.

Those formulas are very nice, but let’s see what happens when
we have 10 samples in each group. The range of values for W in
this case is

(1 + 2 + · · ·+ 10) = 55 ≤W ≤ (11 + 12 + · · ·+ 20) = 155
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Whe is a rank-sum significant?

Intuitively, if we get a value of W near its extreme values, then we
strongly suspect that the two groups are different. If, however, we
get a value near the middle, then we suspect that there is no
difference. How can we make this idea more precise?

First, let’s do some exploration. We start by generating an
unstructured random data matrix:

> n.genes <- 40000
> n.samples <- 20
> type <- rep(c(’A’, ’B’), each=10)
> data <- matrix(rnorm(n.genes * n.samples),
+ ncol=n.samples)
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Next, we rank the values in each row:

> ranked.data <- apply(data, 1, rank)
> dim(data)
[1] 40000 20
> dim(ranked.data)
[1] 20 40000

Notice that the matrix of ranks is transposed when compared to
the original data matrix. So, we can compute the Wilcoxon
rank-sum statistics by summing the correct ranks by column:

> wilstat <- apply(ranked.data[type==’A’,], 2, sum)
> summary(wilstat)

Min. 1st Qu. Median Mean 3rd Qu. Max.
56.0 96.0 105.0 105.1 114.0 153.0

We don’t quite get to the extremes...
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Null distribution of Wilcoxon rank-sum

> hist(wilstat, breaks=seq(54.5, 155.5, by=1))
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What happens with real data?

We’ll return to the prostate cancer data set used in the last
lecture. Recall that this data set contains the log ratios of 42, 129
genes measured using two-color fluorescent microarrays and a
common reference channel. Recall also that we selected a
subset of 10 samples from normal prostate and 10 samples of
prostate cancer.

We compute the Wilcoxon rank-sum statistics for this data set:

> ranked.data <- apply(exprs(prostate), 1, rank)
> dim(ranked.data)
[1] 20 42129
> status <- pData(pheno)$Status
> ranksum <- apply(ranked.data[status==’N’,],
+ 2, sum)
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Real data yields extreme statistics

> summary(ranksum)
Min. 1st Qu. Median Mean 3rd Qu. Max.
55.0 92.0 104.0 103.9 116.0 155.0

> hist(ranksum, breaks=seq(54.5, 155.5, by=1))
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Distributions matter

When we simulated data, we got values of the rank-sum statistic
between 56 and 153.

When we looked at real data, we got rank-sum statistics that
spanned the full range of possible values from 55 to 155.

One (pessimistic) interpretation of this result is that rank-sum
statistics are only useful in microarray experiments if they find
genes where all the values in one group are less than all the
values in the other group.

We can do better by looking more carefully at the distributions.
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R and Wilcoxon

R contains functions to explore the distribution of the rank-sum
statistics:

rwilcox generate random values from the Wilcoxon distribution

dwilcox probability density function

pwilcox cumulative probability function

qwilcox quantile function

This set of functions parallels those for other distributions (like
rnorm , dnorm , pnorm , and qnorm for the normal distribution).

One should note, however, that the rank-sum statistics in R are
shifted so that the smallest value is 0 instead of nX.
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The null distribution

> minW <- sum(1:10); maxW <- sum(11:20)
> breaker <- seq(minW-0.5, maxW+.5, by=1)
> hist(wilstat, breaks=breaker, prob=TRUE)
> lines(minW:maxW, dwilcox(0:(maxW-minW), 10, 10),
+ col=’red’, lwd=3)

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



INTRODUCTION TO MICROARRAYS 14

The real distribution

> hist(ranksum, breaks=breaker, prob=TRUE,
+ ylim=c(0,0.03))
> lines(minW:maxW, dwilcox(0:(maxW-minW), 10, 10),
+ col=’red’, lwd=3)
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> wilp <- sapply(ranksum-minW, function(w, m, n) {
+ if (w > m * n/2) 2 * (1-pwilcox(w, m, n))
+ else 2 * pwilcox(w, m, n)
+ }, 10, 10)
> hist(wilp, breaks=100)
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Empirical Bayes

The discreteness of the values of the Wilcoxon statistics makes
the distribution of p-values problematic for the application of
something like BUM to sort out the significance in the face of
multiple testing. Instead, we’re going to use a differnt approach.

Reference: Efron and Tibshirani. Empirical Bayes methods and
false discovery rates for microarrays. Genetic Epidemiology,
2002; 23: 70–86.
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Basic idea

Assume that there are two classes of genes, Different and Not
Different. We assume prior probabilities

• p0 = Prob(Not Different)

• p1 = 1− p0 = Prob(Different)

and density functions

• f0(y), known Wilcoxon, if Not Different

• f1(y), unknown, if Different

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



INTRODUCTION TO MICROARRAYS 18

Mixtures

The overall probability density function is a mixture

f(y) = p0f0(y) + p1f1(y).

Bayes Theorem: P (H|D) = P (D|H)P (H)/P (D)

Applying Bayes Theorem gives posterior estimates:

p1(y) ≡ Prob(Diff |Y = y) = 1− p0f0(y)/f(y)

and
p0(y) ≡ Prob(NotDiff |Y = y) = p0f0(y)/f(y)

We can use the observed data to estimate the overall density
function by f̂(y) (typically by log-transforming the observed
function and fitting a curve.)
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Empirical Bayes

The “empirical” nature of this Bayesian idea is that we can adjust
the “prior” p0 after looking at the data, and thus obtain some
reasonable values for it. First, here is how well we fit the
distribution:
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Plot of Posterior Probability of Difference

This graph assumes p0 = 1, so no genes are different. The
posterior probability of being different becomes negative in the
middle of the graph. This results from the “empirical” nature of
the estimate without imposing a full model. We can, however,
adjust p0 to prevent seeing any negative probabilities.
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Plot of Posterior Probability of Difference

This shows posterior probabilities with p0 = 0.7, 0.8, 0.9, 1.0.
Somewhere between p0 = 0.7 and p0 = 0.8, all the posterior
probabilities become positive.
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Plot of Posterior Probability of Difference

This plot uses p0 = 0.75, which is essentially the largest value we
can use for p0 and ensure that all the posterior probabilities are
positive. The horizontal line indicates a posterior probability of
90% that a gene is differentially expressed.
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How does this work in R?

We have written a package that implements the empirical Bayes
method with Wilcoxon statistics. For the computations just
shown, do the following:

> require(ClassComparison)
> efron <- MultiWilcoxonTest(exprs(prostate),
+ status)
> hist(efron)
> plot(efron, prior=c(0.7, 0.8, 0.9, 1.0),
+ signif=NULL)
> abline(h=0)
> plot(efron, prior=0.75, ylim=c(0,1))
> abline(h=0)
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How many genes are differentially expressed?

As a crude estimate, the fact that we had to take p0 = 0.75
suggests that 25% of the genes may be different; this is
consistent with the BUM estimate from last time. With a cutoff of
90% on the posterior probability, we get:

> cutoffSignificant(efron, prior=0.75, signif=0.9)
$low
[1] 68
$high
[1] 143
> sum(efron@rank.sum.statistics < 68)
[1] 839
> sum(efron@rank.sum.statistics > 143)
[1] 825
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The Tail-Rank Test

The Wilcoxon rank-sum test and the t-test both look at the same
property: is the mean expression the same? When looking for
cancer biomarkers, this may well be the wrong question.

Cancers that are histologically the same are not identical.
Deletion of part of chromosome 3 (3p14-p23) is found in 50% of
non-small-cell lung cancers; MYC amplification is found in 14% of
stomach cancers; BRCA1 mutations are found in a subset of
breast cancers; a translocation between chromosomes 11 and 14
occurs in 35% of mantle cell lymphomas. These genetic
abnormalities directly causes specific differences in gene
expression that only occur in a subset of cancers. Statistically,
these results suggest that the distributions of gene expression in
cancer patients are likely to differ from the healthy distributions in
much more than the location of the center.
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Motivation: Subset Biomarkers

If a biomarker is only present in 20% of the cancer samples, then
the distributions might look something like this.
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Outline of The Tail-Rank Test

• Collect data on G genes from nH healthy individuals. Write
Xg,i for measurement of gene g on individual i. Assume for
fixed g that Xg,i ∼ Xg are IID.

• Specify a target value ψ for specificity.

• Estimate, for each g, a threshold τg such that
Prob(Xg < τg) = ψ.

• Collect data from nC cancer patients. Count the number Yg of
cancer patients for which the measured expression level of
gene g exceeds τg; we call Yg the tail-rank statistic.

• Call g a biomarker if Yg exceeds a certain threshold.
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The null distribution

Null hypothesis: gene g is not a useful biomarker.

More precisely: the measurements on cancer patients have the
same distribution as the measurements from healthy individuals.

Then: all Yg have identical binomial distributions,

Yg ∼ Y = Binom(nC, 1− ψ).

The point here is that the probability of being in the tail is the
same for healthy and cancer, and is given by 1− ψ, where ψ was
the desired specificity.
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Even when we perform the same test for G genes, the expected
maximum value of G independent instances of Yg remains small.

Let MG = maxg=1...G (Yg) be the maximum over G IID binomial
random variables. Also, let

α = α(m) = Prob(Y > m)

γ = Prob(MG > m)

Then

1− γ = Prob(MG ≤ m)

= Prob(Y1 ≤ m, . . . , YG ≤ m)

= Prob(Y ≤ m)G = (1− α)G.
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The maximum value expected by chance

Solving,
α = 1− (1− γ)1/G.

and m is the (1− α)th quantile of a single binomial distribution:

γ = 0.01, ψ = 0.99
nC G = 100 1000 10000 100000
10 3 3 4 4
20 3 4 5 5
50 5 6 6 7

100 6 7 8 9
250 10 12 13 14
500 15 17 19 20
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Interpretation

One needs to specify two parameters in order to apply the
tail-rank test.

1. ψ, the desired specificity of the biomarker

2. γ, the desired bound on the FWER

Then, given the number of genes and the number of cancer
samples, the values m in a table like the previous one represent
the largest value of Yg that we would expect to see by chance
over the entire microarray. Any gene where we observe Yg > m is
a potential biomarker.
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Tail-rank and real data

We return yet again to our prostate cancer data set. We will now
start using the entire data set, which contains 14 samples from
normal prostate, 61 prostate cancer samples, and 9 samples from
lymph node metastases of prostate cancer. With this number of
samples, taking γ = 0.95 and ψ = 0.95, a gene was called a
biomarker if at least 16 of the 71 cancer samples were above the
threshold.

We assumed that the log ratios of the normal prostate samples
were normally distributed. We computed 90% tolerance bounds
for the 5th and 95th percentiles, and counted the number of
combined prostate cancer samples whose log ratios fell outside
these boundaries.
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Tail-rank results

We identified 1, 766 spots that were “positive” biomarkers, since
they were present at higher than normal levels in at least 16
cancer samples. We also identified 1, 930 spots that were
“negative” biomarkers, since they were expressed at lower than
normal levels in at least 16 samples. In total, we identified 3,692
spots as candidate biomarkers.

Although the theory told us the number of false positives should
be close to zero, we decided to test this using both simulations
and a permutaion test. We simulated completely random (IID
normal) data 100 times, and we permuted the samples labels on
the real data 100 times.
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Reviewing significance

Pretty good, when you consider that the test with the real data
detected a few thousand potential markers!
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Differential expression results

We repeated the t-test analysis on the full data set (adjusing for
multiple testing using BUM). With FDR < 0.05, we used a cutoff
at p < 0.000045 or |t| > 4.25. We detected 3,522 differentially
expressed spots. Of these, 1, 415 spots were overexpressed in
prostate cancer and 2, 107 spots were underexpressed.

We also repeated the Wilcoxon test with the empirical Bayes
approach. In order to get comparable results, we selected a
cutoff corresponding to a posterior probability of 99.9%. We
detected 3,627 differentially expressed spots. Of these, 1, 498
spots were overexpressed and 2, 129 spots were underexpressed
in prostate cancer.
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Comparing tests

The number of genes found by the three tests was very simialr.
Are they finding the same things?

There was good agreement between the t-test and the Wilcoxon
test. More than 90% (1, 905) of underexpressed and 88% (1, 244)
of overexpressed spots that were found by the t-test were also
detected by the Wilcoxon test. SO, we only need to comnpare
one of these to the tail-rank test.
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Comparing tests

Lower left and right = different by T, not by tail-rank

Upper center = different by tail-rank, not by T.
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Looking at the results

Since the tests give different answers, which one should we
believe?

Both, since they are giving the answers to different questions!

Whether you perform one test or many, however, it is useful to
look at the expression values for some of the genes that you find,
if only to make sure you believe the results.

A useful R function for this purpose is stripchart . Here is an
example for our data set. First, we get the clinical status as an
ordered factor.

> x <- ordered(clinical.info$Status,
+ levels=c(’N’, ’T’, ’L’))

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



INTRODUCTION TO MICROARRAYS 39

Selecting interesting genes

Now we look at genes with small tail-rank statistics (< 2) and
significant t-statistics.

> k.weird <- tr.stats < 2 & (abs(t.stats) > 4.25)
> sum(k.weird)
[1] 38

We can select one of the “weird” genes and get its expression
data.

> i.k.weird <- (1:length(k.weird))[k.weird]
> i <- sample(i.k.weird, 1)
> y <- as.vector(t(expression.data[i,]))
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Outliers can throw off the estimates

> label <- as.character(gene.info$Gene.Symbol[i])
> stripchart(y ˜ x, xlab=’’, main=label,
+ method=’jitter’)
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Some genes are normally variable
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Selecting interesting biomarkers

Now we look at genes with significant tail-rank statistics and
small t-statistics (|t| < 1.25).

> k.weird <- tr.stats > 15 & (abs(t.stats) < 1.25)
> sum(k.weird)
[1] 52

We use the same idea to select some of these genes and plot
stripcharts to see if the values agree with what we tihnk the test
should be doing.
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GDF11
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HACE1
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CANX
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GITA
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When T and Tail-Rank agree
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Using the tail-rank test in R

We developed the tail-rank test; the paper has been submitted. A
preprint, along with an R package is available on the web at

http://bioinformatics.mdanderson.org/TailRank

Basic usage:

> require(TailRank)
> tr.stats <- tail.rank.test(data, status)

More generally, we have a set of R packages that can be used to
study microarrays.
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http://bioinformatics.mdanderson.org/
Software/OOMPA
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Examples with the ClassComparison package

> require(ClassComparison}
> # perform t-tests
> tea <- MultiTtest(exprs(prostate), status)
> # beta-uniform mixture model
> bum <- Bum(tea@p.values)
> hist(bum)
> # Dudoit’s method
> dudoit <- Dudoit(exprs(prostate), status)
> plot(dudoit)
> # significane analysis of microarrays
> sam <- Sam(exprs(prostate), status)
> plot(sam)
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