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Lecture 12: Differential Expression and
Borrowing

• Modelling Redux

• Borrowing Strength Across Genes

• Combining Borrowing with Ranks

• Borrowing Tail Ranks

• Conditioning on Biology
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The Modelling Punchline

Incorporating external information can help sharpen
our inferences.

Incorporating such information often goes by the
name of modelling, but it can also be viewed as
“conditioning on relevant subsets of information”.

The crux of the problem is defining precisely what
constitutes a “relevant subset”, which includes what
we mean by “relevant”.
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Types of Conditioning

One of the more common types of conditioning is to
assume that some other quantity being measured
shares some distributional characteristics with
measurements of the quantity of interest.

In shorter words, we can use other data to give us
better estimates of standard deviations, or the shape
of the distribution, or so on. We saw this last lecture
with the use of a third group of microarray
measurments to sharpen inferences about differences
between the first two.
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Are Other Genes Relevant?

Are there similar characteristics to microarray
measurements of different genes?

If there are, how can we use them?

Most frequently, the answer to the first question is
assumed to be yes based on empirical observations.
Occasionally, a modelling of the underlying physical
processes can further suggest the nature of the
similarity.
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An Example

Our first example: normalization.

This can assume either that “most genes don’t
change” (single scaling factor normalization) or, more
stringently, that “the quantiles of the intensity
distributions should be about the same” (loess
normalization).
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Are the Assumptions Valid Here?

In general, yes. In checking normalization methods,
people have produced some nice-looking smooth
curves, but the latter in particular are working under
the assumption that if we start with genes of the same
rough level of expression, the distributions of values
when nothing is going on will be about the same.
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Other Extensions of Borrowing

borrowing strength on the p-value scale.

BUM

Empirical Bayes
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Extending this idea to diff. e.

What can we do here?

Say that we have our standard question of trying to
compare the levels of a given gene in two different
groups, A and B.
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Extending this idea to diff. e.

What can we do here?

Say that we have our standard question of trying to
compare the levels of a given gene in two different
groups, A and B.

How can we change the t statistic?

As before, our best guess about the central value of
the gene in each of the groups is driven by the
observed values for that gene:

x̄A − x̄B is unchanged.
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Pooling variance estimates

What can use to improve our estimate of the variance?

How about the variance of all of the genes?

This is likely to be too much.

What if we just use the genes that are close by in
terms of overall (average) intensity?

This type of procedure makes some of the same
underlying assumptions as the loess normalization,
which also works with “locally similar” data.
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What does this produce?

a stabilized variance and a “smooth” t-test.

This idea has been independently reintroduced in
several forms.



INTRODUCTION TO MICROARRAYS 10

What does this produce?

a stabilized variance and a “smooth” t-test.

This idea has been independently reintroduced in
several forms.

Baldi and Long (2001) use a Bayesian approach to
trade off between the sample variance for the gene of
interest and the pooled variance estimate. This is
known as a “shrinkage” estimate.

Newton et al (2001) use a Gamma-Poisson model
which achieves the same effect.
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Some More Papers

The “fudge factor” in the denominator of SAM is of this
variety.

Baggerly et al (2001) use a Beta-binomial model
based on the use of variance derived from replicate
spottings to derive the the locally pooled variance
estimate; there is no weighting tradeoff with the actual
variance observed.
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Are We Using It?

This last paper is the basis for some of the “standard
analyses” done at MD Anderson. All of the above tests
were developed in the context of cDNA microarrays.

We’ve also used it to analyze data from nylon
membrane arrays (Coombes, 2001).
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Why might the assumption be valid here?

There are plausible reasons why the variance of
microarray readings should change in a smooth
fashion as the overall intensity increases.

These have to do with lognormal expression values,
background subtraction, and thresholding.



INTRODUCTION TO MICROARRAYS 13

Why might the assumption be valid here?

There are plausible reasons why the variance of
microarray readings should change in a smooth
fashion as the overall intensity increases.

These have to do with lognormal expression values,
background subtraction, and thresholding.

But we’re implicitly assuming that “most genes aren’t
too correlated” so a variance estimate derived from
several genes will be close.
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Implications of Independence

We note that this assumption of independence means
that in terms of trying to define the overall variance
distribution, it is not a good idea to choose a bunch of
genes known to be biologically related as our relevant
subset. It is interesting to explore these connections,
but here we are seeking reinforcement of a story by
looking for groups of genes having similar expression
patterns.
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Does this help a great deal?

In our earlier discussions, we noted that better
characterization of the variability did improve things,
but maybe not so much.
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Does this help a great deal?

In our earlier discussions, we noted that better
characterization of the variability did improve things,
but maybe not so much.

However, that assessment was predicated on our
having a good idea of the underlying distribution to
begin with. If the data are skewed or subject to
frequent outliers, things can get worse.
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Skewness, Outliers, and Bears?

This, of course, is why we often shift to rank tests
which don’t depend on the particular shape of the
distribution. But, as we saw last time, the discrete
nature of the ranks may preclude a rank test from
yielding a small p-value even when something
extreme is going on.
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Linking Borrowing and Ranks

Small p-values, however, can be obtained if we have
more “effective samples” with which to characterize
the underlying distribution, leading us to combine the
idea of borrowing strength across genes with the idea
of using ranks to remain less sensitive to the particular
shape of the underlying distribution.
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The Relative Rank Test

Oddly enough, we haven’t seen that much written
about borrowing with ranks, but here goes.

Assume that we are interested in deciding if the levels
of gene g are different between two groups A and B,
and that g is for the most part contained within a set of
genes G having similar null distributions.

The standard procedure (Wilcoxon) is to rank the
nA + nB values of g and sum the ranks of those in one
of the groups (say A). The p-values are then
computed by permutation and counting arguments.
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The Relative Rank Test

For Wilcoxon, we note that we could just as easily
have worked with the difference in average ranks for A
and B, respectively, as the total must stay fixed.
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The Relative Rank Test

For Wilcoxon, we note that we could just as easily
have worked with the difference in average ranks for A
and B, respectively, as the total must stay fixed.

Here, we rank all G ∗ (nA + nB) expression values
within the “relevant set” G, and focus on the difference
between the average ranks for gene g in groups A and
B. Here, the choice of just one sum (say the A ranks)
or the difference does matter because there are
intervening values present.
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What does this potentially buy us?

The ability to get small p-values

The ability to get large p-values

The ability to differentiate between “extreme cases”

Some robustness against outliers (we lose some of
this relative to the Wilcoxon test, however) or different
distributions
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What does this potentially cost us?
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What does this potentially cost us?

accuracy, if the distributions are starkly different (eg,
including high real variability genes with low real
variability genes).

The traditional borrowing of strength focuses on a
single number (such as the variance) and presumes
that will be stable. Rank sharing makes stronger
distributional assumptions.
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Some Math

What can we say about the distribution of the
difference r̄A − r̄B?

Well, if G is large, then we can effectively ignore the
discrete nature of the rank distribution. To make things
easier (on me), let’s divide the ranks by G ∗ (nA + nB)
so that we have values ranging from 0 to 1.
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Some Math

When nothing is going on, the expected difference in
average ranks is 0. The variance of a single draw from
a uniform distribution is 1/12, so the variance of the
difference is

1
12

(
1
nA

+
1
nB

)
.

Approximate normality kicks in fairly quickly, and for
finite samples the shape involves the repeated
convolution of uniforms (giving B-splines).
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Some Outcomes

So, what do the results of using this test look like?

Looking at the prostate cancer data, the values
returned by the relative rank test look intermediate
between those of Wilcoxon and t-tests. By using
multiple genes to more finely partition the ranks, we
recapture some of the parametric sensitivity of the
t-test. Here, the data were approximately normal to
begin with.
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Relative Tails?

Can the relative rank approach be used to help with
the tail rank test for biomarkers?

Well, in the description of the tail rank test given
earlier, it was stated that we needed to specify two
things before using the test:

ψ, the desired specificity of the biomarker, and

γ, the bound on the FWER.

The way that the relative rank approach can help is
hidden in the way the value of ψ is used.
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Defining Quantiles

Specifically, in order to use the tail rank statistic we
need to estimate, for each gene g, a threshold value τg
such that P (Xg < τg) = ψ

The difficulty is that τg represents a tail quantile of a
distribution, because we want ψ to be close to 1. Tail
quantiles are hard to estimate well unless (a) you have
lots of samples (which we typically won’t) or (b) you
have some knowledge of the parametric form of the
distribution of Xg.
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Tradeoffs

The question then becomes one of which assumption
is more plausible:

that we know a parametric form well enough to
characterize tails,

or

that the distribution of expression values in a given
intensity range when nothing is going on may be
similar enough across genes for them to be
productively combined.
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The Upside

If we collect the ranks for G genes as above, and
focus on the results in the control samples, then our
“effective sample size” will increase, typically to the
point where we can get point estimates of some
extreme quantiles (such as 99%).
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Further Extensions

What other ways can we use the relative rank
approach?

Kruskal-Wallis can be revisited.

Is there some way to build sensitivity into the tail rank
procedure? Probably not, since we’re assuming that
the behavior of the biomarker is “atypical” for the
subset that it flags as interesting.
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Sensitivity and Biomarkers

There is an asymmetry here, which reflects the
asymmetry in the question we’re asking.

For good biomarkers, we want the specificity to be
high, but we’re willing to live with low sensitivity.

The rationale for this is that the heterogeneity of the
disease suggests that if markers are to be
productively used, this should be as part of a panel.

We don’t yet know how to assemble a good and
parsimonious panel.

We may be able to assemble a good panel.
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Conditioning on Biology

Above, we’ve tended to group probes as “similar”
based on their observed expression values, giving
intensity-dependent variance estimates,
normalization, and so on.

Are there other ways of gathering probes or probesets
into groups that we might expect to have similar
behavior with respect to baseline brightness and
variability?

c© Copyright 2004, 2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



INTRODUCTION TO MICROARRAYS 32

Exploiting Sequence: PDNN and GCRMA

Some of the more effective methods work by grouping
probes in part based on their sequence.

What properties of a probe sequence might make it
better at binding, or make the bonds it does produce
stronger?
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Intensity by GC Count

G-C has 3 hydrogen bonds, A-T has 2
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Defining Affinity

A model for intensity

log(PMij) = Θi + αj + εij

A formula for affinity (Naef and Magnasco, 03, Phys
Rev E v68)

α =
25∑
k=1

∑
j∈{A,T,G,C}

µjk1bk=j, µjk =
3∑

m=0

βjmx
m
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Probe Affinity by Position

Why the asymmetry?
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Invoking GCRMA in R

uses some information from the MM values! Follow
outline in BioC...

library(gcrma)
library(hgu95av2probe)
library(hgu95av2cdf)
library(affydata)
data(Dilution)
ai <- compute.affinities(cdfName(Dilution))
Dil.expr <- gcrma(Dilution,affinity.info=ai)
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