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Lecture 6: Affymetrix, R, and BioConductor

• Processing Affymetrix data

• Quantification = summarization

• Description of quantification methods

• MAS 5.0
• RMA
• PDNN

• Quality control assessment
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Processing Affymetrix Data in BioConductor

Recall that we can load all the CEL files in a directory using
these commands:

> library(affy) # load the affy library
> # next, point to the directory with our CEL files
> setwd("c:/projects/celfiles")
> my.data <- ReadAffy() # read all the CEL data

To continue with an example that doesn’t require a lot of CEL
files, we can load in a demonstration data set:

> library(affydata)
> data(Dilution)

These commands will create an AffyBatch object called
Dilution that you can explore.
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Processing Affymetrix data

BioConductor breaks down the low-level processing of
Affymetrix data into four steps. The design is highly modular,
so you can choose different algorithms at each step. It is
highly likely that the results of later (high-level) analyses will
change depending on your choices at these steps.

• Background correction

• Normalization (on the level of features = probes)

• PM-correction

• Summarization
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Background correction

The list of available background correction methods is stored
in a variable:

> bgcorrect.methods
[1] "mas" "none" "rma" "rma2"

So there are four methods:

none Do nothing

mas Use the algorithm from MAS 5.0

rma Use the algorithm from the current version of RMA

rma2 Use the algorithm from an older version of RMA
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Background correction in MAS 5.0

MAS 5.0 divides the microarray (more precisely, the CEL file)
into 16 regions. In each region, the intensity of the dimmest
2% of features is used to define the background level. Each
probe is then adjusted by a weighted average of these 16
values, with the weights depending on the distance to the
centroids of the 16 regions.
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Background correction in RMA

RMA takes a very different approach to background
correction. First, only PM values are adjusted, the MM values
are not changed at all. Second, they try to model the
distribution of PM intensities statistically as a sum of

• exponential signal with mean λ

• normal noise with mean µ and variance σ2 (truncated at 0
to avoid negatives).

If we observe a signal X = x at a PM feature, we adjust it by

E(s|X = x) = a + b
φ(a/b)− φ((x− a)/b)

Φ(a/b) + Φ((x− a)/b)− 1
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where b = σ and a = s− µ− λσ2.
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Comparing background methods

> d.mas <- bg.correct(Dilution[,1], "mas")
> d.rma <- bg.correct(Dilution[,1], "rma")
> bg.with.mas <- pm(Dilution[,1]) - pm(d.mas)
> bg.with.rma <- pm(Dilution[,1]) - pm(d.rma)
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> summary(bg.with.mas)
Min. :74.53
1st Qu.:93.14
Median :94.35
Mean :94.27
3rd Qu.:95.80
Max. :97.67
> summary(bg.with.rma)
Min. : 72.4
1st Qu.:113.7
Median :114.9
Mean :112.1
3rd Qu.:114.9
Max. :114.9
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Difference in background estimates

On this array, RMA gives slightly larger background
estimates, and gives estimates that are more nearly constant
across the array. The overall differences can be displayed in
a histogram.
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How big is 20 units?

> summary(pm(Dilution[,1]))
Min. : 76.0
1st Qu.: 137.0
Median : 225.0
Mean : 507.3
3rd Qu.: 489.0
Max. :23356.3
> summary(mm(Dilution[,1]))
Min. : 77.3
1st Qu.: 120.3
Median : 164.5
Mean : 323.5
3rd Qu.: 313.0
Max. :17565.3
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Quantification = summarization

I’m going to avoid talking about normalization and PM
correction for the moment, and jump ahead to summarization.
As we have explained previously, this step is the critical final
component in analyzing Affymetrix arrays, since it’s the one
that combines all the numbers from the PM and MM probe
pairs in a probe set into a single number that represents our
best guess at the expression level of the targeted gene.

The available summarization methods, like the other available
methods, can be obtained from a variable.

> express.summary.stat.methods
[1] "avgdiff" "liwong" "mas"

"medianpolish" "playerout"
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expresso

The recommended way to put together all the steps for
processing Affymetrix arrays in BioConductor is with the
function expresso. Here’s an example that blocks
everything except the summarization:

> tempfun <- function(method) {
+ expresso(Dilution, bg.correct=FALSE,
+ normalize=FALSE,
+ pmcorrect.method="pmonly",
+ summary.method=method)
+ }
> ad <- tempfun("avgdiff") # MAS4.0
> al <- tempfun("liwong") # dChip
> am <- tempfun("mas") # MAS5.0
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> ar <- tempfun("medianpolish") # RMA
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Bland-Altman (M-versus-A) plots

Early in the study of microarrays, several groups (including
ours) introduced what have come to be known in the
microarray world as “M-versus-A” plots or sometimes just
MA-plots. Statisticians knew these as “Bland-Altman” plots
long before anyone started studying microarrays, since they
were among the first people to use them.

The problem being solved by a Bland-Altman MA-plot is that
of providing a useful graphical display of two vectors of data,
x and y, which typically represent two measurements that
should (almost always) be the same. The first thing that
comes to mind is to plot y against x in the usual way, and see
how well the points follow the identity line y = x.
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Bland-Altman (M-versus-A) plots

The difficulties with this simple approach are

1. Humans can recognize horizontal lines much more easily
than the can recognize diagonal lines.

2. Different aspect ratios (i.e., different scales along the axes)
can move the line away from the diagonal.

3. Deviations from a tilted diagonal line are hard to estimate
accurately by eye.

The Bland-Altman solution is to rotate the plot by 45 degrees,
which turns the diagonal line into a horizontal line. To do this,
they plot the average ((x + y)/2) along the horizontal axis and
the difference (y − x) along the vertical axis.

c© Copyright 2004, 2005, 2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



AFFYMETRIX, R, AND BIOCONDUCTOR 17

MA-plots in BioConductor

The affy package includes a function called mva.pairs to
make it easier to generate these plots. (You should also
check out the MAplot function.) We’re going to use this to
compare the different quantification/summary methods.

> temp <- data.frame(exprs(ad)[,1], exprs(al)[,1],
+ exprs(am)[,1], 2ˆexprs(ar)[,1])
> dimnames(temp)[[2]] <- c(’Mas4’, ’dChip’,
+ ’Mas5’, ’RMA’)
> mva.pairs(temp)
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Alternate preprocessing

It is possible that the differences we see in the MA-plots are
caused because we did no processing before summarization.
Let’s try again, but this time we will use expresso to correct
background with the RMA method, perform quantile
normalization, and just use the PM values for summarization.

> tempfun <- function(method) {
+ expresso(Dilution,
+ bgcorrect.method="rma",
+ normalize.method="quantiles",
+ pmcorrect.method="pmonly",
+ summary.method=method)
+ }

c© Copyright 2004, 2005, 2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



AFFYMETRIX, R, AND BIOCONDUCTOR 20

Alternate preprocessing

Now we repeat the same commands as before, which use
the four different summarization methods on the same array
and put them into a temporary data frame for display.

+ ad <- tempfun("avgdiff") # MAS4.0
+ al <- tempfun("liwong") # dChip
+ am <- tempfun("mas") # MAS5.0
+ ar <- tempfun("medianpolish") # RMA
+ temp <- data.frame(exprs(ad)[,1], exprs(al)[,1],
+ exprs(am)[,1], 2ˆexprs(ar)[,1])
+ dimnames(temp)[[2]] <- c(’Mas4’, ’dChip’,
+ ’Mas5’, ’RMA’)
+ mva.pairs(temp)
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Comparison of summarization methods
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How do the summarization methods work?

Recall first what we know about the oldest method for
processing Affymetrix data, the AvDiff method of MAS4.0.
This method

1. Uses the background-correction method described above,
based on the bottom 2% of probes.

2. Normalizes by scaling the median intensity to a fixed value.

3. Computes the PM − MM differences.

4. Trims outliers and computes the average (mean) of the
differences.
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Review of dChip

We have also looked previously at the dChip method:

1. Normalizes using an “invariant set” method (described
later).

2. Optionally uses either both PM and MM values or PM-only.

3. Fits a statistical model for sample i, and probe j,

MMij = νj + θiαj + ε

PMij = νj + θiαj + θiφj + ε

Focusing on the PM − MM differences, this model
estimates the probe affinities φj and the expression values
θi.
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Improving Robustness: MAS 5.0

Affymetrix learned something from the modelling process. In
particular, they noted the importance of multiplicative
adjustments and statistical measures with some means of
identifying outliers. They also noted that negative values from
AvDiff just weren’t well received by biologists or statisticians.

They modifed their algorithm in several ways. Instead of the
straight MM value, they subtract a “change threshold” (CT)
which is guaranteed to be lower than the PM value. Basically,
they “fix” the MM value when it is smaller than PM. Next, they
shifted to the log scale to capture multiplicative effects.
Finally, they used a robust statistical method to downweight
outliers instead of their earlier ad hoc method.

signal = exp(Tukey Biweight(log(PMj − CTj)))
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MAS 5.0 vs MAS 4.0

It was at this stage that Affy decided it wasn’t going to fight to
have the best algorithm; it would let others play that game.
Indeed, it could reap the benefits of better algorithms by
selling more chips.

To let people test their own models, they created and posted
a test dataset: The Affy Latin Square Experiment.

Using the test set, they could demonstrate that the MAS5
signal statistic is an improvement on AvDiff. It tracks nominal
fold changes better, and it is less variable.

What it still doesn’t do is use information across chips.
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Robust Multichip Analysis: RMA

RMA (Irizarry et al, Biostatistics 2003) tries to take the better
aspects of both dChip and MAS 5.0, and to add some further
twists.

Earlier in this lecture, we described the statistical model used
by RMA to perform background correction.

They normalize using the “median polish” method, which we
will describe in a later lecture.

They throw away the MM values entirely. They contend that
there are too many cases where MM > PM, and hence
including the MMs introduces more variability than the
correction is worth. (They are probably correct.)
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Robust Multichip Analysis: RMA

As with dChip, the RMA summarization method is built
around a model:

log(medpol(PMij −BG)) = µi + αj + εij

(array i, probe j).

The parameters of this model are fit using multiple chips.

Unlike dChip, the random jitter (epsilon) is introduced on the
log scale as opposed to the raw scale. This more accurately
captures the fact that more intense probes are more variable.

c© Copyright 2004, 2005, 2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



AFFYMETRIX, R, AND BIOCONDUCTOR 28

Incorporating other information: PDNN

The above methods are all mathematical, in that they focus
solely on the observed values without trying to explain those
values.

Why should some probes give consistently stronger signals
than others?

What governs nonspecific binding?

In general, these will depend on the exact sequence of the
probe, and the thermodynamics of the binding.
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Fitting the thermodynamics

Li Zhang introduced the Position-Dependent Nearest
Neighbor (PDNN) model (Nat Biotech, 2003; 21:818). Unlike
dChip and RMA, the parameters for the PDNN model can all
be estimated from a single chip, in large part because the
number of parameters is much smaller. He posits a scenario
where the chance of binding is dictated by the probe
sequence, and shifts the mathematical modeling back from
the expression values to the probe sequences.

The model parameters are:

1. The position k of a base pair in the sequence.

2. Interactions with nearest neighbors: knowing k, we must
also know what is at k − 1 and k + 1.
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What is the model?

The observed signal Yij for probe i in the probe set for gene j

is modeled as

Yij =
Nj

1 + exp(Eij)
+

N∗

1 + exp(E∗
ij)

+ B

In this model, there are two global terms that need to be
estimated: the background, B, and the number, N∗, of RNA
molecules contributing to non-specific binding (NSB).

The quantity of interest is Nj, the number of expressed
mRNA molecules contributing to gene-specific binding (GSB).

The binding energies Eij and E∗
ij are sums over contributions

from each position.
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What are the model parameters?

For example, consider a probe with sequence

CACCCAGCTGGTCCTGTGGATGGGA

• We write this as an ordered list of neighboring pairs:

1. C, A energy = w1ν(b1, b2)
2. A, C energy = w2ν(b2, b3)
3. C, C energy = w3ν(b3, b4)
4. C, C energy = w4ν(b4, b5)
5. C, A energy = w5ν(b5, b6)
6. A, G energy = w6ν(b6, b7)
7. G, C energy = w7ν(b7, b8)
8. C, T energy = w8ν(b8, b9)
9. etc.
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Free energy

The free energy for a perfect match is

Eij =
∑

k

wkν(bk, bk+1)

There is a similar formula for binding in the presence of manu
mismatches. In total, there are 2*24 weight parameters, 2*16
neighboring base pair parameters, 2 global parameters, plus
one expression parameter per probe set. Because there are
many probes in each probe set, we can fit all these
parameters with a single chip.
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Fitted weight parameters
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Using PDNN in R

The implementation of the PDNN method is contained in a
separate BioConductor package. When you load the package
libary, it updates the list of available methods.

> library(affypdnn)
registering new summary method ’pdnn’.
registering new pmcorrect method ’pdnn’

and ’pdnnpredict’.
> express.summary.stat.methods
[1] "avgdiff" "liwong" "mas"
[4] "medianpolish" "playerout" "pdnn"
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Using PDNN in R

One should note that the PDNN method does not follow the
standard four-step procedure used by expresso. Instead of
background correction, the method starts immediately with
quantile normalization. The model can be fit separately on
the PM and MM probes, or the MM probes can be discarded.
Background is estimated along with the energy parameters
and expression parameters as part of a single model.

In particular, you must use a variant of expresso called
expressopdnn.
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Which method is best?

Well, all of the above methods are implemented in
Bioconductor.

we’re going to try a few head to head comparisons later. In
this context, it’s worth thinking about how we can define a
measure of “goodness”. Hmm?
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Quality control assessment

A critical part of the analysis of any set of microarray
experiments is ensuring that the arrays are of reasonable
quality. BioConductor includes several methods to assist with
the QC effort for Affymetrix projects.

The first step is typically to look at the images, which we did
in the previous lecture.

We can also look at the distributions of intensities to se how
well they match.

BioConductor includes tools to compute some summary
statistics that tell us about the relative quality and
comparability of arrays
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A summary view of four images

> boxplot(Dilution, col=1:4)
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The distribution of feature intensities

> hist(Dilution, col=1:4, lty=1)
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Simple Affy

We can use the simpleaffy package to compute some QC
summary statistics.

> require(simpleaffy) # load the library
> Dil.qc <- qc(Dilution) # compute the QC metrics

Computing the metrics will take a little time, and then we can
start to look at them.
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Background

The first check we make is that the background values across
the arrays should be roughly comparable. In the four arrays
from the dilution experiment, that seems to be the case.

> avbg(Dil.qc) # average background
20A 20B 10A 10B

94.25323 63.63855 80.09436 54.25830
> maxbg(Dil.qc) # maximum background

20A 20B 10A 10B
97.66280 68.18998 83.24646 57.62283
> minbg(Dil.qc) # minimum background

20A 20B 10A 10B
89.52555 60.01397 77.32196 49.22574
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Global scaling factors

As mentioned above, the standard Affymetrix normalization
procedure involves globally rescaling the arrays to set the
median probe intensity to the same level. Affymetrix says that
the scaling factors should not difffer by more than 3-fold if we
want to compare arrays.

> sfs(Dil.qc)
[1] 0.8934013 1.2653627 1.1448430 1.8454067

Extremely low (below about 30%) or high (above about 60%)
values for the percentage of probes called present also signal
potential quality problems.

> percent.present(Dil.qc)
20A.present 20B.present 10A.present 10B.present
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48.79208 49.82178 49.37822 49.75842
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3’/5’ ratios

Affymetrix includes probes at the 3’ and 5’ ends of some
control genes; the ratios should be less than 3.

> ratios(Dil.qc)
AFFX-HSAC07.3’/5’ AFFX-HUMGAPDH.3’/5’

20A 0.6961423 0.4429746
20B 0.7208418 0.3529890
10A 0.8712069 0.4326566
10B 0.9313709 0.5726650

AFFX-HSAC07.3’/M AFFX-HUMGAPDH.3’/M
20A 0.1273385 -0.0602414
20B 0.1796231 -0.0136629
10A 0.2112914 0.4237527
10B 0.2725534 0.1125823
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RNA degradation

Individual (perfect match) probes in each probe set are
ordered by location relative to the 5’ end of the targeted
mRNA molecule. We also know that RNA degradation
typically starts at the 5’ end, so we would expect probe
intensities to be lower near the 5’ end than near the 3’ end.

The affy package of BioConductor includes functions to
summarize and plot the degree of RNA degradation in a
series of Affymetrix experiments. These methods pretend
that something like “the fifth probe in an Affymetrix probe set”
is a meaningful notion, and they average these things over all
probe sets on the array.
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Visualizing RNA degradation

> degrade <- AffyRNAdeg(Dilution)
> plotAffyRNAdeg(degrade, col=1:4)
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Model-based QC

As we have seen, methods like dChip and RMA fit statistical
models to the probe intensities in order to summarize gene
expression values. The quantities associated with such
models can also provide QC information. The BioConductor
package affyPLM fits a probe-level model (PLM) similar to
RMA.

> require("affyPLM")
> pset <- fitPLM(Dilution)

The residuals (unexplained variation) from the model can be
plotted using the image function. Patterns here typically
indicate spatial flaws in the image that are not captured by
the model. No such features were noted in the Dilution
experiment, so I won’t reproduce the pictures.
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Relative Log Expression plots

> Mbox(pset)
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Normalized Unscaled Standard Error

> boxplot(pset)
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