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Lecture 24: Design, Microarrays, and
Proteomics

• Design Questions

• Sample Size

• Simulations

• Intro to MALDI

• A SELDI Case Study

• Applied Classification

• High-Res Qstar Data
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Design Questions

• What is the question being asked?

• What types of arrays are being used?

• What size of effect is being looked for?

• How many arrays are needed?
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Some common questions

Class Comparison – given classes with membership known a
priori, find genes showing differences between classes.

Class Prediction – build a model characterizing known
classes, and use the model to predict the class status of
future samples.

Class Discovery – identify subsets of samples based on their
clustering behavior.
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Class Comparison: Two classes

ncanc Cancers, ncont Controls

For a fixed number of samples, how should these be divided
between cases and controls?

Each measurement is subject to variation σ2, and we want to
estimate the cancer/control contrast with maximal precision.

Contrast: Avg(Cancer)−Avg(Control).

V (Contrast) = σ2

ncanc
+ σ2

ncont
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Information = Inverse Variance

Optimal variance: 2/ncanc.

Say we have 15 cancer samples and 5 normal samples. How
much information do we have about the contrast?

1
5 + 1

15 = 4
15 = 2

7.5

so we have slightly less information than would be present in
an experiment with 8 samples from each group.
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More General Inverse Variance
1
k + 1

3k = 4
3k = 2

1.5k

Two key principles:

Replication and Balance
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What if we have 3 groups?

AB contrast: 1
nA

+ 1
nB

AC contrast: 1
nA

+ 1
nC

BC contrast: 1
nB

+ 1
nC

Are the contrasts equally important? Can we assert how
much more important some given contrasts are?
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What if groupings overlap?

Treatment 1 (high/low) and Treatment 2 (high/low)?

Aim for roughly equal numbers of samples at each of the 4
possible combinations

These groups are “factors” and the combinations of all
possible levels comprise factorial designs
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What types of arrays do we have?

Affymetrix, or other single-channel arrays: nothing
qualitatively new.

Two-color arrays: may have some new features associated
with the natural pairing of samples.
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Reference Designs for cDNA Arrays

Notation: Ratios are in Red/Green order

Comparing two groups, A and B

A1/Ref, A2/Ref, B1/Ref, B2/Ref

Focus on log ratios

Avg(log(A/Ref))−Avg(log(B/Ref))

Is this is a good design? (Can we do better?)
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When can we do better?

If the only contrast of interest is A vs B (ie, the reference itself
is not of secondary interest)

If we are unlikely to expand the contrast later (introducing,
say, group C)

In this case, comparisons made using a reference are
indirect, and direct comparisons may give more precision
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How much better?

A1/B1, B2/A2 vs A1/Ref, B1/Ref (2 arrays each)

Say the variance associated with measuring a single log ratio
is σ2; we want to estimate log(A/B).

V (1
2 log(A1/B1)− 1

2 log(B2/A2)) = 1
4σ

2 + 1
4σ

2 = σ2/2.

V (log(A1/Ref)− log(B1/Ref)) = σ2 + σ2 = 2σ2

Direct comparison can be 4 times as precise.

This makes some assumptions about independence, but
direct comparisons are never worse.
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How can we extend this?

With two groups, work on balanced blocks

Same number of A and B, one each per array, equal numbers
of arrays with A/B and B/A.

Note that the reference design didn’t necessarily require dye
swaps, but the direct comparisons do. (This assumes
comparisons with the reference are not of interest!)

Very efficient in terms of numbers of arrays used for the
amount of information obtained.

Doesn’t work as nicely for clustering.
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A Loop Extension

A1/B1, B1/A2, A2/B2, B2/A1

Every sample is used twice, once in red, once in green.

All pairs of samples can be compared through paths in the
loop, cancelling out intervening terms:

log(A1/B2) = log(A1/B1) + log(B1/A2) + log(A2/B2)

pairs with terms “farther away” in the loop have their contrasts
estimated less well.
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Do we use Loops?

Rarely. Loops can be broken by bad arrays.

Loops are more complex in terms of analysis if we are
interested in individual pairs than reference designs.

For contrasting two groups, randomized blocks work just as
well.

Loops can require more uses of small amounts of RNA.

Aesthetically, however, they’re quite nice.
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Another Design Issue

Randomization.

This is underdiscussed in the array literature, but should be at
least contemplated so as to avoid biases. This can help offset
issues associated with run order, tech running the arrays, etc.
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How many arrays do we need?

To do what?

Have a minimal level of power to detect an effect of a given
size.

This is the classical problem of setting sample sizes,
requiring decisions about sensitivity and specificity.
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Numbers Needed

All told, we need to specify at least 4 parameters:

α, the significance level

1− β, the statistical power

δ, the size of the effect we want to be able to see (e.g., 1 on a
log scale)

σ, the standard deviation of the gene expression levels
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An analytic approach

Given these, Simon et al (2002) show that

n =
4(tα/2+tβ)2

(δ/σ)2

suffices, where the t distribution has n− 2 degrees of
freedom (this requires iteration in fitting).

In order to get started on the iteration, it pays to think big
initially, so that

n =
4(zα/2+zβ)2

(δ/σ)2

Using zs means that no iteration is required.

c© Copyright 2004-2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



INTRODUCTION TO MICROARRAYS 20

Some sample numbers

To account for multiple testing, they suggest starting with
small values of α and β, such as α = 0.001 and β = 0.05.

Of course, the value of σ will change from gene to gene, but
some intermediate value from prior data (such as the median
value) can be used to suggest the right order.

Using α = 0.001, β = 0.05, σ = 0.5, δ = 1, the target value of n

is 26 using the z approximation, and goes up to 30 using the t

distribution.
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A limitation

The above approach assumes that the two groups to be
contrasted will be present in roughly equal amounts (n/2). If
the true ratio is to be k : 1 instead of 1 : 1, then the target size
needs to be scaled by a factor of (k + 1)2/4k.
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A simulation approach

Alexander Zien et al approach the problem of sample size
determination through simulation, but they focus on a more
involved model that explicitly incorporates multiple types of
error (additive and multiplicative).

Their java computation applet is available at

http://www.scai.fhg.de/special/bio/howmanyarrays/

There is a similar applet at

http://bioinformatics.mdanderson.org
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Their qualitative observations

Biological variation dominates technical variation

Measuring more samples is better than replicating
measurements of the same samples

Sizes of classes should be as balanced as possible

Non-parametric tests are better
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What their simulation requires

Estimates of variability:

multiplicative biological variability

multiplicative technical variability

additive technical variability

desired detectable fold change

desired detectable signal to noise ratio
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What their simulation requires

numbers of samples in each class

numbers of genes on the array

numbers of genes expected to be “really different”
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What it returns

Simulated false positive rates

Simulated false negative rates

sensitivity and specificity

For their default values, they found that they needed about
12-15 samples per class.
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What Are Proteomic Spectra?

DNA makes RNA makes Protein

Microarrays allow us to measure the mRNA complement of a
set of cells

Mass spectrometry allows us to measure the protein
complement (or subset thereof) of a set of cells

Proteomic spectra are mass spectrometry traces of biological
specimens
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Why Are We Excited?

Profiles at this point are being assessed using serum and
urine, not tissue biopsies

Spectra are cheaper to run on a per unit basis than
microarrays

Can run samples on large numbers of patients
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How Does Mass Spec Work?
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What Do the Data Look Like?

c© Copyright 2004-2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



INTRODUCTION TO MICROARRAYS 31

Learning: Spotting the Samples
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What the Guts Look Like
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Taking Data
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Some Other Common Steps

Fractionating the Samples

Changing the Laser Intensity

Working with Different Matrix Substrates
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SELDI: A Special Case

www.ciphergen.com

Precoated surface performs some preselection of the
proteins for you.

Machines are nominally easier to use.
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A SELDI Case Study

• 100 ovarian cancer patients

• 100 normal controls

• 16 patients with “benign disease”

Use 50 cancer and 50 normal spectra to train a classification
method; test the algorithm on the remaining samples.
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Their Results

• Correctly classified 50/50 of the ovarian cancer cases.

• Correctly classified 46/50 of the normal cases.

• Correctly classified 16/16 of the benign disease as “other”.

Data at http://home.ccr.cancer.gov/ncifdaproteomics/ (used to
be at http://clinicalproteomics.steem.com)

Large sample sizes, using serum
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The Data Sets

3 data sets on ovarian cancer

Data Set 1 – The initial experiment. 216 samples, baseline
subtracted, H4 chip

Data Set 2 – Followup: the same 216 samples, baseline
subtracted, WCX2 chip

Data Set 3 – New experiment: 162 cancers, 91 normals,
baseline NOT subtracted, WCX2 chip

A set of 5-7 separating peaks is supplied for each data set.

We tried to (a) replicate their results, and (b) check
consistency of the proteins found
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We Can’t Replicate their Results (DS1 & DS2)
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Some Structure is Visible in DS1
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Or is it? Not in DS2
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Processing Can Trump Biology (DS1 & DS2)
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We Can Analyze Data Set 3!
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Do the DS2 Peaks Work for DS3?
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Do the DS3 Peaks Work for DS2?
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Peaks are Offset
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Which Peaks are Best? T-statistics

Note the magnitudes: t-values in excess of 20 (absolute
value)!
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One Bivariate Plot: M/Z = (435.46,465.57)

Perfect Separation. These are the first 2 peaks in their list,
and ones we checked against DS2.
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Another Bivariate Plot: M/Z = (2.79,245.2)

Perfect Separation, using a completely different pair. Further,
look at the masses: this is the noise region.
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Perfect Classification with Noise?

This is a problem, in that it suggests a qualitative difference in
how the samples were processed, not just a difference in the
biology.

This type of separation reminds us of what we saw with
benign disease.

(Sorace and Zhan, BMC Bioinformatics, 2003)
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Mass Accuracy is Poor?

A tale of 5 masses...

Feb ’02 Apr ’02 Jun ’02
DS1 DS2 DS3
-7.86E-05 -7.86E-05 -7.86E-05
2.18E-07 2.18E-07 2.18E-07
9.60E-05 9.60E-05 9.60E-05
0.000366014 0.000366014 0.000366014
0.000810195 0.000810195 0.000810195
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How are masses determined?

Calibrating known proteins
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Calibration is the Same?

M/Z vectors the same for all three data sets.

Machine calibration the same for 4+ months?
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What is the Calibration Equation?

The Ciphergen equation

m/z

U
= a(t− t0)2 + b, U = 20K, t = (0, 1, ...) ∗ 0.004

Fitting it here

a = 0.2721697 ∗ 10−3, b = 0, t0 = 0.0038

These are the default settings that ship with the software!
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Meanwhile...

In January 2004, Correlogic, Quest Diagnostics and Lab
Corp announced plans to offer a “home brew” test called
OvaCheck: samples would be sent in by clinicians for
diagnosis.

Estimated market: 8 to 10 million women. Estimated cost:
100-200 dollars/test.
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A Timeline

critiques available online, Jan 29

New York Times, Feb 3

Statement by the SGO, Feb 7

FDA letter to Correlogic, Feb 18

FDA letters to Quest and Lab Corp, Mar 2

editorials and features:
JNCI, Apr 7 & Jun 2, J Proteome Res, Apr 12, Nature Jun 3
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The Response

Petricoin et al have written a rebuttal. This appeared as a
comment on Sorace and Zhan (BMC Bioinformatics Mar ’04)

Several points. We focus on the two “most major”: (cited in
Nature news feature Jun ’04).

1) Another group has found structure persisting across
multiple data sets (DS2 & DS3), so our analysis is flawed.

2) Our focus has been on SELDI data, but it is their more
recent high-resolution (Q-star) data that is the state of the art.
We’re beating a dead horse.
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Consistent Structure in DS2/DS3?

Recently, Zhu et al. (PNAS 2003,v100:14666-71) noted that
they could find a set of m/z values that separated cancers
from normals in both DS2 and DS3.

Use local smoothing (Gaussian kernel) and t-statistics to
identify useful peaks in DS2. Keep only those with t-stats
exceeding a certain magnitude threshold, 4.22, found using
random field theory.

Choose a subset to get behavior on a training set (from DS2).

Final list of 18 m/z values.
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We Were Somewhat Surprised...

10 of the 18 m/z values are less than 500 Da.

DS2 is baseline subtracted, and DS3 is not.

DS2 is offset relative to DS3.

If the same nominal m/z values are used, we would think they
are finding different proteins.

Try a simple test.
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What Are the T-Statistics?
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13/18 Flip Sign?!?
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What Do Sign Flips Mean?

If intensities were higher in cancer in DS2, they’re higher in
controls in DS3.

This does not strike us as a consistent biological signature.

When simple and complex tests really disagree, question the
complex test.
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What Results Do We Get?
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How was the Test Performed?

Given our results, we contacted Zhu et al.

There was a mixup.

“the spectra in the second dataset were classified using
a jack-knife approach where distances were computed
between each spectrum and all of the other spectra in
the second dataset, and the spectrum was classified
according to the status of its 5 nearest neighbors in this
set of spectra. Only the peak locations (m/z values) were
retained across datasets, and these served to define the
points at which the distances were computed. Further,
the validation simulations used training sets drawn from
the (August) dataset.” – Wei Zhu, pers comm.
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Why Did They Get Good Results?

Even if they were chosen in an indirect way, these 18 m/z
values work to separate DS2 and DS3. Does that mean that
these values are “important”?

If the results look too good, try something that shouldn’t work.

DS3 is easy to classify.

Is it really easy?
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Try Random Peak Sets
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Classifying DS3 is Too Easy

We do just as good a job using randomly chosen m/z values.

This is disturbing, as it suggests that the differences between
groups are pervasive, and if the differences were really that
stark we should have seen them before.
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Are We Beating a Dead Horse?

Qstar data is higher resolution.

They’ve added some QA/QC steps to remove bad spectra.

Still using patterns.

Reported results are even better.

Endocrine-Related Cancer (Jul ’04) – 100% sensitivity and
specificity.
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What Does Qstar Data Look Like?

Conrads et al, Expert Rev Mol Diag (2003), 3, 411
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Some Neat Structure: Doubling!

The calibration is correct!
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SELDI Calibration En Passant

The calibration is incorrect! (between 2.5-4%).
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Where are the Best Separators Here?

Best near 8602 Da.
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Is it real? Looking at all the data

Heat map of the 8602 Da peak. Second peak 80 Da lower?
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What’s Going On? Part I

Conrads et al, ERC (Jul ’04), Fig 6a
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What’s Going On? Part II

Conrads et al, ERC (Jul ’04), Fig 7
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What’s Going On? Part III

Conrads et al, ERC (Jul ’04), Fig 6a & 7
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That Horse Looks Alive...

All of the controls were run before all of the cancers.

Given the time trend in the data, this biases the results – the
cancer samples were more affected by the worsened
problem on Day 3.

A better machine will not save you if
the experimental design is poor.
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What’s up with the data?

Petricoin et al, March 04: “If the authors had contacted us, we
could have elaborated, as previously stated on our website,
that the SELDI-TOF MS data was produced by randomly
commingling cases and controls. On any given 8 spot
ProteinChip array, both cases and control samples were
applied in random spot locations, to minimize systematic
chip-to-chip variation.”

Liotta et al, Feb 05: “In contrast, the goal of data set 8-7-02
was to determine whether the between-day process variance
was more or less than the variance between the case and
control groups. For data set 8-7-02, case and control
samples were run in separate batches on separate days and
not commingled.”
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So, Are We Ready for Prime Time?

If this means telling a woman that she needs an
oophorectomy based on these tests, then no way.

In July of 2004, the FDA ruled that OvaCheck could not be
made available under the homebrew exemption as the
program was a “device” that needed to be more tightly
regulated.
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What About Proteomic Profiling in General?

Our results DO NOT say that the approach can’t work. (There
are some other arguments on that front.)

Our results DO say that experimental design and
randomization are called for at the processing as well as at
the collection stages.

Some well-designed studies have appeared (eg, Zhang et al,
Cancer Res, 2004) and do show some gains in predictive
accuracy.
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and There’s Fun Stuff Beyond Design!

Processing spectra to find peaks

Calibration of spectra

Baseline subtraction and Normalization of spectra

Deconvolution of spectra to account for specifics of MS
structure (multiple charge states, common modifications)

Separating cancers from controls

and this goes for other types of MS as well: LC-MS, FT-ICR,
2d-gels
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