
GS01 0163
Analysis of Microarray Data

Keith Baggerly and Kevin Coombes

Section of Bioinformatics

Department of Bioinformatics and Computational Biology

UT M. D. Anderson Cancer Center

kabagg@mdanderson.org

kcoombes@mdanderson.org

18 September 2007

Introduction to Microarrays 1

Lecture 6: More on R and Affymetrix Arrays

• Beyond Matrices

• The Reproducibility Problem

• Installing TeX

• Reading Data Into R

• Bioconductor Packages

• Microarray Data Structures

• Affymetrix Data in BioConductor

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 2

Beyond Matrices

We have gone from scalar to vector to matrix, attaching names as we go,

with the goal of keeping associated information together. So far, we’ve

done this with numbers, but we could use character strings instead:

> letters[1:3]

[1] "a" "b" "c"

> x <- letters[1]

> x <- letters[1:3]

> x <- matrix(letters[1:12], 3, 4)

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 3

Mixing Modes in Lists

In R, we cannot easily mix data of different modes in a vector or matrix:

> x <- c(1, "a")

> x

[1] "1" "a"

However, a list can have (named) components that are of different modes

and even different sizes:

> x <- list(teacher = "Keith", n.students = 14,

+ grades = letters[c(1:4, 6)])

> x

$teacher

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 4

[1] "Keith"

$n.students

[1] 14

$grades

[1] "a" "b" "c" "d" "f"

Note that we named the components of the list at the same time that we

created it. Many functions in R return answers as lists.

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 5

Extracting Items From Lists

If we want to access the first element of x, we might try using the index

or the name in single brackets:

> x[1]

$teacher

[1] "Keith"

> x["teacher"]

$teacher

[1] "Keith"

These don’t quite work. The single bracket extracts a component, but

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 6

keeps the same mode; what we have here is a list of length 1 as opposed

to a character string. Two brackets, on the other hand...

> x[[1]]

[1] "Keith"

> x[["teacher"]]

[1] "Keith"

The double bracket notation can be cumbersome, so there is a shorthand

notation with the dollar sign. Using names keeps the goals clear.

> x$teacher

[1] "Keith"

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 7

Lists with Structure

Now, there are some very common types of structured arrays. The most

common is simply a table, where the rows correspond to individuals and

the columns correspond to various types of information (potentially of

multiple modes). Because we want to allow for multiple modes, we can

construct a table as a list, but this list has a constraint imposed on it –

all of its components must be of the same length. This is similar in

structure to the idea of a matrix that allows for multiple modes. This

structure is built into R as a data frame.

This structure is important for data import. Before looking at that,

however, we are going to revisit the notion of reproducibility of our

analyses.

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 8

The Reproducibility Problem

1. Researcher contacts analyst: “I just read this interesting paper. Can

you perform the same analysis on my data?”

2. Analyst reads paper. Finds algorithms described by biologists in

English sentences that occupy minimal amount of space in the

methods section.

3. Analyst gets public data from the paper. Takes wild guesses at actual

algorithms and parameters. Is unable to reproduce reported results.

4. Analyst considers switching to career like bicycle repair, where

reproducibility is less of an issue.

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 9

Alternate Forms of the Same Problem

1. Remember that microarray analysis you did six months ago? We ran a

few more arrays. Can you add them to the project and repeat the same

analysis?

2. The statistical analyst who looked at the data I generated previously is

no longer available. Can you get someone else to analyze my new data

set using the same methods (and thus producing a report I can expect

to understand)?

3. Please write/edit the methods sections for the abstract/paper/grant

proposal I am submitting based on the analysis you did several months

ago.

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 10

The Code/Documentation Mismatch

Most of our analyses are performed using R. We can usually find an R

workspace in a directory containing the raw data, the report, and one or

more R scripts.

There is no guarantee that the objects in the R workspace were actually

produced by those R scripts. Nor that the report matches the code. Nor

the R objects.

Because R is interactive, unknown commands could have been typed at

the command line, or the commands in the script could have been

cut-n-pasted in a different order.

This problem is even worse if the software used for the analysis has a

fancy modern GUI. It is impossible to document how you used the GUI in

such a way that someone else could produce the exact same results—on

the same data—six months later.

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 11

The Solution: Sweave

Sweave = R + LaTeX.

This talk was prepared using Sweave. So was this standard report.

If you already know both R and LaTeX, then the ten-second version of

this talk takes only two slides:

1. Prepare a LaTeX document. Give it an“Rnw”extension instead of

“tex”. Say it is called“myfile.Rnw”

2. Insert an R code chunk starting with <<>>=

3. Terminate the R code chunk with an“at”sign (@) followed by a space.

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 12

Using Sweave

To produce the final document

1. In an R session, issue the command

Sweave("myfile.Rnw")

This executes the R code, inserts input commands and output

computations and figures into a LaTeX file called“myfile.tex”.

2. In the UNIX or DOS window (or using your favorite graphical

interface), issue the command

pdflatex myfile

This produces a PDF file that you can use as you wish.

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 13

Viewing The Results

Here is a simple example, showing how the R input commands can

generate output that is automatically included in the LaTeX output of

Sweave.

> x <- rnorm(30)

> y <- rnorm(30)

> mean(x)

[1] 0.2279967

> cor(x, y)

[1] 0.3408799

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 14

A Figure

Next, we are going to insert a figure. First, we can look at the R

commands that are used to produce the figure.

> x <- seq(0, 6 * pi, length = 450)

> par(bg = "white", lwd = 2, cex = 1.3, mai = c(1.2,

+ 1.2, 0.2, 0.2))

> plot(x, sin(x), type = "l")

> abline(h = 0, col = "blue")

On the next slide, we can look at the actual figure. (Part of the point of

this example is to illustrate that you can separate the input from the

output. You can even completely hide the input in the source file and just

include the output in the report.)

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 15

Sine Curve

0 5 10 15

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

si
n(

x)

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 16

A Table

> library(xtable)

> x <- data.frame(matrix(rnorm(12), nrow = 3,

+ ncol = 4))

> dimnames(x) <- list(c("A", "B", "C"), c("C1",

+ "C2", "C3", "C4"))

> tab <- xtable(x, digits = c(0, 3, 3, 3, 3))

> tab

C1 C2 C3 C4

A 1.052 −0.720 0.015 −0.595

B 0.159 −1.059 0.321 1.753

C −0.539 0.530 −0.734 0.119

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 17

A Table, Repeated

Again, we want to point out that you can show the results—including

tables—without showing the commands that generate them.

C1 C2 C3 C4

A 1.052 −0.720 0.015 −0.595

B 0.159 −1.059 0.321 1.753

C −0.539 0.530 −0.734 0.119

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 18

Sweave Details

Next, we are going to leave this PDF presentation for a while to look at a

very similar document in a more typical print format, and then look at

the Rnw file that was used to produce it.

Next, we will talk about how to install LaTeX so that you can start using

these ideas yourself.

Finally, we will look at methods for reading microarray data into R so we

can start analyzing it.

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

file:sample.Rnw

Introduction to Microarrays 19

Installing TeX

The standard version of TeX or LaTeX for Windows is MiKTeX, which is

available at http://www.miktex.org. The current version is 2.6. You

should download the“Basic MiKTeX 2.6” installer. The file you get when

you do this is called basic-miktex-2.6.2742.exe. Keep track of

where you save this file (your desktop will work just fine) and then

double-click on the resulting icon to start the installation.

According to the Comprehensive TeX Archive Network (CTAN,

http://www.ctan.org), the standard version of TeX or LaTeX for

Macintosh computers is gwTeX, and they provide a link to the download

and installation page. Since I have never installed this version, you will

have to figure out how to get it yourself....

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

http://www.miktex.org
http://www.ctan.org

Introduction to Microarrays 20

The MiKTeX Installer

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 21

The MiKTeX Installer

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 22

The MiKTeX Installer

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 23

The MiKTeX Installer

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 24

Reading Data Into R

While we can simply type stuff in, or use source() to pull in small

amounts of data we’ve typed into a file, what we often want to do is to

read a big table of data. R has several functions that allow us to do this,

including read.table(), read.delim(), and scan().

We can experiment by using some of the files that we generated in dChip

for the first HWK.

We could load the sample info file, and the list of filtered genes. Then we

could use the sample info values to suggest how to contrast the

expression values in the filtered gene table.

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 25

Importing our dChip Data

I exported all of the dChip quantifications to a single file. The file has a

header row, with columns labeled“probe set”,“gene”,“Accession”,

“LocusLink”,“Description”and then“N01”and so on, 1 column per

sample. We can read this into R as follows:

> singh.dchip.data <-

read.delim(c("../SinghProstate/Singh_",

"Prostate_dchip_expression.xls"));

> class(singh.dchip.data)

[1] "data.frame"

> dim(singh.dchip.data)

[1] 12625 108

The number of columns is a bit odd...

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 26

More on Importing

If we invoke help(read.delim), help pops up for read.table. The

former is a special case of the latter. Let’s take a look at bits of the

usage lines for each:

read.table(file, header = FALSE, sep = "",

quote = "\"", dec = ".", row.names, col.names,

as.is = FALSE, na.strings = "NA", colClasses = NA,

nrows = -1, skip = 0, check.names = TRUE,

fill = !blank.lines.skip, strip.white = FALSE,

blank.lines.skip = TRUE, comment.char = "#")

read.delim(file, header = TRUE, sep = "\t", quote=

"\"", dec=".", fill = TRUE, ...)

Note the default function arguments!

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 27

Speeding Up Import

Reading the documentation suggests a few speedups:

• we can use comment.char = "", speeding things up

• we can use nrows = 12626, for better memory usage

• we could shift to using scan (use help!).

singh.dchip.data <-

read.delim(c("../SinghProstate/Singh_Prostate''

,"_dchip_expression.xls"),

comment.char = "",

nrows = 12626

);

is indeed faster!

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 28

Is This What We Want?

All of the expression data is now nicely loaded in a data frame. But this

data frame really breaks into two parts quite nicely – gene information,

and expression values. If we split these apart, then the expression value

matrix has 102 columns, corresponding to the sample info entries quite

nicely.

singh.annotation <- singh.dchip.data[,1:5];

singh.dchip.expression <-

as.matrix(singh.dchip.data[,6:107]);

rownames(singh.dchip.expression) <-

singh.annotation$probe.set;

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 29

Grab the Sample Info Too

What are the columns in my sample info file?

scan name sample name type

run_date_block cluster_block

N01__normal N01 N 2 2

(the last two you might not have).

singh.sample.info <-

read.delim("../SinghProstate/sample_info_2.txt",

comment.char = "",

nrows = 103

);

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 30

Test Something Interesting

In the first homework, we saw that the data split into two clusters that

didn’t agree well with the tumor/normal split. It might very well be that

there was some type of batch effect in addition to the biological split of

interest.

Can we factor the batch effect out? If we know what the batch split is,

we can first fit a model using just the batches, subtract the fit off, and

then fit a model using the tumor/normal split on what remains.

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 31

Tumor vs Normal

singh.probeset.lm <-

lm(singh.dchip.expression[

singh.annotation$probe.set

== "31539_r_at",]

~ singh.sample.info$type

);

singh.probeset.anova <-

anova(singh.probeset.lm);

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 32

Tumor vs Normal (cont)

> singh.probeset.anova

Analysis of Variance Table

Response: singh.dchip.expression[

singh.annotation$probe.set == "31539_r_at",]

Df Sum Sq Mean Sq F value Pr(>F)

$type 1 71.42 71.42 5.3748 0.02247 *

Residuals 100 1328.81 13.29

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 33

T vs N, After Blocking

singh.probeset.lm.full <-

lm(singh.dchip.expression[

singh.annotation$probe.set

== "31539_r_at",]

~ singh.sample.info$cluster.block

+ singh.sample.info$type

);

singh.probeset.anova.full <-

anova(singh.probeset.lm.full);

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 34

T vs N, After Blocking (cont)

> singh.probeset.anova.full

Analysis of Variance Table

Response: singh.dchip.expression[

singh.annotation$probe.set == "31539_r_at",]

Df Sum Sq Mean Sq F value Pr(>F)

$block 1 404.97 404.97 40.6399 5.85e-09 ***

$type 1 8.75 8.75 0.8779 0.3511

Residuals 99 986.51 9.96

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 35

Hasn’t Someone Done This?

Other people have thought about the data structures that might be

natural for microarray data. In particular, a lot of these functions are

collected at Bioconductor.

Let’s try to grab some of the packages and functions that will help with

this type of analysis.

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 36

Bioconductor Packages

You will need the following packages from the Bioconductor web site.

Use the items“Select repositories...” and“Install package(s)...” on the

“Packages”menu to get them.

reposTools : Repository tools for R

Biobase : Base functions for BioConductor

affy : Methods for Affymetrix oligonucleotide arrays

affydata : Affymetrix data for demonstration purposes

affypdnn : Probe dependent nearest neighbor (PDNN) for the affy

package

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

http://www.bioconductor.org

Introduction to Microarrays 37

Bioconductor Widget Packages

In order to use some of the graphical tools that make it easier to read

Affymetrix microarray data and construct sensible objects describing the

experiments, you will also need the following packages from the

Bioconductor web site.

tkWidgets : R based Tk widgets

widgetTools : Creates an interactive tcltk widget

DynDoc : Dynamic document tools

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

http://www.bioconductor.org

Introduction to Microarrays 38

Microarray Data Structures

Recap: What information do we need in order to analyze a collection of

microarray experiments?

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 39

Experiment/Sample Information

In even the simplest experimental designs, where we want to find out

which genes are differentially expressed between two types of samples, we

at least have to be told which samples are of which type. In more

complicated experimental designs, we may be interested in a number of

additional factors. For example, in a study comparing cancer patients to

healthy individuals, we may want to record the age and sex of the study

subjects. In animal experiments, there may be a variety of different

treatments that have to be recorded.

The R object that holds this kind of information is a data.frame.

Conceptually, a data.frame is just a two-dimensional table. By

convention, they are arranged so that each row corresponds to an

experimental sample and each column corresponds to one of the

interesting factors.

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 40

Example of a data.frame

Array Age Sex Status

a1 41 M cancer

a2 64 F cancer

a3 56 M healthy

a4 48 F healthy

Data frames are particularly useful for this purpose in R, because they

can hold textual factors as well as numeric ones. For most array sudies, it

is best to create a table of the interesting information and store it in a

separate file. If you create the table in a spreadsheeet program (like

Excel), you should store it as a text file in“tab-separated-value” format.

That is, each row holds the information from one experiment, and

column entries are separated by tab characters.

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 41

Phenotypes

You can create a data frame in R from a file in tab-separate-value format

using the read.table command. (You can also create them directly, as

illustrated later.)

The Biobase package in BioConductor views the sample information as

an extension of the notion of a data frame, which they call a phenoData

object. In their conception, this object contains the“phenotype”

information about the samples used in the experiment. The extra

information in a phenoData object consist of optional“long” labels that

can be used to identify the covariates (or factors) in the columns.

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 42

Mock data

Let’s create a fake data set. We pretend we have measured 200 genes in

8 experimental samples, the first four of which are healthy and the last

four are cancer patients.

> fake.data <- matrix(rnorm(8*200), ncol=8)

> sample.info <- data.frame(

+ spl=paste('A', 1:8, sep=''),

+ stat=rep(c('cancer', 'healthy'), each=4)

At this point, we have a matrix containing fake expression data and a

data fame containing two columns (“spl”and“stat”). Let’s create a

phenoData object with more intelligible labels:

> pheno <- new("phenoData", pData=sample.info,

+ varLabels=list(spl='Sample Name',

stat='Cancer Status'))

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 43

> pheno

phenoData object with 2 variables and 8 cases

varLabels

spl : Sample Name

stat : Cancer Status

> pData(pheno)

spl stat

1 A1 cancer

2 A2 cancer

3 A3 cancer

4 A4 cancer

5 A5 healthy

6 A6 healthy

7 A7 healthy

8 A8 healthy

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 44

ExprSets

The object in BioConductor that links together a collection of expression

data and its associated sample information is called an exprSet.

> my.experiments <- new("exprSet",

+ exprs=fake.data, phenoData=pheno)

> my.experiments

Expression Set (exprSet) with

200 genes

8 samples

phenoData object with 2 variables and 8 cases

varLabels

spl : Sample Name

stat : Cancer Status

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 45

Warning

If you create a real exprSet this way, you should ensure that the

columns of the data matrix are in exactly the same order as the rows of

the sample information data frame; the software has no way of verifying

this property without your help.

You’ll also need to put together something that describes the genes used

on the microarrays.

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 46

Where is the gene information?

The exprSet object we have created so far lacks an essential piece of

information: there is nothing to describe the genes. One flaw in the

design of BioConductor is that it allows you to completely separate the

biological information about the genes from the expression data. (This

blithe acceptance of the separation is surprisingly common among

analysts.)

Each exprSet includes a slot called annotation, which is a character

string containing the name of the environment that holds the gene

annotations.

We’ll return to this topic later to discuss how to create these annotation

environments.

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 47

Optional parts of an exprSet

In addition to the expression data (exprs) and the sample information

(phenoData), each exprSet includes several optional pieces of

information:

annotation name of the gene annotation enviroment

se.exprs matrix containing standard errors of the expression estimates

notes character string describing the experiment

description object of class MIAME describing the experiment

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 48

Affymetrix Data in BioConductor

For working with Affymetrix data, BioConductor includes a specialized

kind of exprSet called an AffyBatch. To create an AffyBatch object

from the CEL files in the current directory, do the following:

> library(affy) # load the affy library

> my.data <- ReadAffy() # read CEL data

You may have to start by telling R to use a different working directory to

find the CEL files; the command to do this is setwd.

> setwd("/my/celfiles") # point to the CEL files

Paths in R are separated by forward slashes (/) not backslashes (\); this

is a common source of confusion.

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 49

Demonstration data

Note: If you are trying to follow along and have not yet obtained some

CEL files, the affydata package includes demonstration data from a

dilution experiment. You can load it by typing

> library(affydata)

> data(Dilution)

These commands will create an AffyBatch object called Dilution that

you can explore.

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 50

Peeking at what’s inside

BioConductor will automatically build an object with the correct gene

annotations for the kind of array you are using the first time you access

the data; this may take a while, since it downloads all the information

from the internet. So, don’t be surprised if it takes a few minutes to

display the response to the command

> Dilution

AffyBatch object

size of arrays=640x640 features (12805 kb)

cdf=HG_U95Av2 (12625 affyids)

number of samples=4

annotation=hgu95av2

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 51

Looking at the experimental design

You can see what the experiments are by looking at the phenotype

information.

> phenoData(Dilution)

phenoData object with 3 variables and 4 cases

varLabels

liver: amount of liver RNA hybridized to array in micrograms

sn19: amount of central nervous system RNA hybidized to array

scanner: ID number of scanner used

> pData(Dilution)

liver sn19 scanner

20A 20 0 1

20B 20 0 2

10A 10 0 1

10B 10 0 2

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 52

A first look at an array

> image(Dilution[,1])

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 53

A summary view of four images

> boxplot(Dilution, col=1:4)

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 54

The distribution of feature intensities

> hist(Dilution, col=1:4, lty=1)

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 55

Examining individual probesets

The affy package in BioConductor includes tools for extracting

individual probe sets from a complete AffyBatch object. To get at the

probe sets, however, you need to be able to refer to them by their“name”,

which at present means their Affymetrix ID.

> geneNames(Dilution)[1:3]

[1] "100_g_at" "1000_at" "1001_at"

> random.affyid <- sample(geneNames(Dilution), 1)

> # random.affyid <- '34803_at'

> ps <- probeset(Dilution, random.affyid)[[1]]

The probeset function returns a list of probe sets; the mysterious stuff

with the brackets takes the first element from the list (which only had

one...).

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 56

A probeset profile in four arrays

> plot(c(1,16), c(50, 900), type='n',

+ xlab='Probe', ylab='Intensity')

> for (i in 1:4) lines(pm(ps)[,i], col=i)

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 57

Examining individual probesets

Let’s add the mismatch probes to the graph:

> for (i in 1:4) lines(pm(ps)[,i], col=i, lty=2)

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 58

PM − MM

> plot(c(1,16), c(-80, 350), type='n',

+ xlab='Probe Pair', ylab='PM - MM)

> temp <- pm(ps) - mm(ps)

> for (i in 1:4) lines(temp[,i], col=i)

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 59

RNA degradation

Individual (perfect match) probes in each probe set are ordered by

location relative to the 5’ end of the targeted mRNA molecule. We also

know that RNA degradation typically starts at the 5’ end, so we would

expect probe intensities to be lower near the 5’ end than near the 3’ end.

The affy package of BioConductor includes functions to summarize and

plot the degree of RNA degradation in a series of Affymetrix experiments.

These methods pretend that something like“the fifth probe in an

Affymetrix probe set” is a meaningful notion, and they average these

things over all probe sets on the array.

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

Introduction to Microarrays 60

Visualizing RNA degradation

> degrade <- AffyRNAdeg(Dilution)

> plotAffyRNAdeg(degrade)

© Copyright 2004–2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data

