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Lecture 12: Rank-based tests of differential
expression

• Wilcoxon rank-sum test

• Empirical Bayes

• The Tail-Rank Test

• Looking at the results
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Nonparametric tests

The t-test for differences in mean expression between two groups of

samples assumes that the measurements in each group are normally

distributed. If this assumption is far from the truth, then the t-statistics

and p-values you get may be meaningless. (Actually, departures from

normality tend to increase the Type II error, especially when the sample

size is small.)

Statistically, the dispute over log-transforming microarray data reduces to

whether a normal distribution better describes the data on the raw scale

or on the log scale.

We can avoid this problem entirely by using a statistical test that does

not assume anything about the distributions. These tests are usually

called distribution-free or nonparametric.
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Wilcoxon rank-sum test

The most common nonparametric test for a difference in mean expression

is the Wilcoxon rank-sum test, which is also known as the Mann-Whitney

test.

We assume that we have sample measurements from two groups:

X1, X2, . . . , XnX

Y1, Y2, . . . , YnY

We then rank these values from smallest to largest, getting something like

X3 ≤ Y5 ≤ X1 ≤ X10 ≤ Y1 ≤ · · · ≤ X2

1 2 3 4 5 nX + nY
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Computing rank-sums

Next, we compute a statistic W by summing the ranks of the

measurements from the first group. In our example,

W = 1 + 3 + 4 + · · ·+ (nX + nY ).

W is always an integer, and it is easy to compute its minimum and

maximum values. The minimum occurs when all the X values are smaller

than all the Y values. Thus, all the X values are at the beginning of the

list, and we have

W ≥ 1 + 2 + · · ·+ nX =
nX(nX + 1)

2
.
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The maximum occurs when all the X values come after all the Y values,

giving

W ≤ (nY + 1) + (nY + 2) + · · ·+ (nY + nX)

= nXnY + (1 + 2 + · · ·nX)

= nXnY +
nX(nX + 1)

2

=
nX(2nY + nX + 1)

2
.

Those formulas are very nice, but let’s see what happens when we have

10 samples in each group. The range of values for W in this case is

(1 + 2 + · · ·+ 10) = 55 ≤W ≤ (11 + 12 + · · ·+ 20) = 155
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When is a rank-sum significant?

Intuitively, if we get a value of W near its extreme values, then we

strongly suspect that the two groups are different. If, however, we get a

value near the middle, then we suspect that there is no difference. How

can we make this idea more precise?

First, let’s do some exploration. We start by generating an unstructured

random data matrix:

> n.genes <- 40000

> n.samples <- 20

> type <- rep(c("A", "B"), each = 10)

> data <- matrix(rnorm(n.genes * n.samples),

+ ncol = n.samples)
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Next, we rank the values in each row:

> ranked.data <- apply(data, 1, rank)

> dim(data)

[1] 40000 20

> dim(ranked.data)

[1] 20 40000
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Notice that the matrix of ranks is transposed when compared to the

original data matrix. So, we can compute the Wilcoxon rank-sum

statistics by summing the correct ranks by column:

> wilstat <- apply(ranked.data[type == "A",

+ ], 2, sum)

> summary(wilstat)

Min. 1st Qu. Median Mean 3rd Qu. Max.

56 96 105 105 114 155

We don’t quite get to the extremes...
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Null distribution of Wilcoxon rank-sum

> hist(wilstat, breaks = seq(54.5, 155.5, by = 1))
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What happens with real data?

We will return to the prostate cancer data set used in the last lecture.

Recall that this data set contains the log ratios of 42, 129 genes

measured using two-color fluorescent microarrays and a common

reference channel. Recall also that we selected a subset of 10 samples

from normal prostate and 10 samples of prostate cancer.

We compute the Wilcoxon rank-sum statistics for this data set:

> ranked.data <- apply(expression.data, 1, rank)

> dim(ranked.data)

[1] 20 42129

> status <- clinical.info[, "Status"]

> ranksum <- apply(ranked.data[status == "N",

© Copyright 2004–2007, Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data



Introduction to Microarrays 11

+ ], 2, sum)
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Real data yields extreme statistics

> summary(ranksum)

Min. 1st Qu. Median Mean 3rd Qu. Max.

55.0 93.0 104.0 104.4 116.0 155.0

Histogram of ranksum
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Distributions matter

When we simulated data, we got values of the rank-sum statistic between

56 and 155.

When we looked at real data, we got rank-sum statistics that spanned

the full range of possible values from 55 to 155.

One (pessimistic) interpretation of this result is that rank-sum statistics

are only useful in microarray experiments if they find genes where all the

values in one group are less than all the values in the other group.

We can do better by looking more carefully at the distributions.
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R and Wilcoxon

R contains functions to explore the distribution of the rank-sum statistics:

rwilcox generate random values from the Wilcoxon distribution

dwilcox probability density function

pwilcox cumulative probability function

qwilcox quantile function

This set of functions parallels those for other distributions (like rnorm,

dnorm, pnorm, and qnorm for the normal distribution).

One should note, however, that the rank-sum statistics in R are shifted so

that the smallest value is 0 instead of nX.
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The null distribution

> minW <- sum(1:10); maxW <- sum(11:20)

> breaker <- seq(minW-0.5, maxW+0.5, by=1)

> hist(wilstat, breaks=breaker, prob=TRUE)

> lines(minW:maxW, dwilcox(0:(maxW-minW), 10, 10),

+ col='red', lwd=3)
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Histogram of wilstat
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The real distribution

> hist(ranksum, breaks = breaker, prob = TRUE,

+ ylim = c(0, 0.03))

> lines(minW:maxW, dwilcox(0:(maxW - minW),

+ 10, 10), col = "red", lwd = 3)
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Wilcoxon p-values

> wilp <- sapply(ranksum - minW, function(w,

+ m, n) {

+ if (w > m * n/2)

+ 2 * (1 - pwilcox(w, m, n))

+ else 2 * pwilcox(w, m, n)

+ }, 10, 10)
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> hist(wilp, breaks = 100)

Histogram of wilp
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Empirical Bayes

The discreteness of the values of the Wilcoxon statistics makes the

distribution of p-values problematic for the application of something like

BUM to sort out the significance in the face of multiple testing. Instead,

we are going to use a differnt approach.

Reference: Efron and Tibshirani. Empirical Bayes methods and false

discovery rates for microarrays. Genetic Epidemiology, 2002; 23: 70–86.
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Basic idea

Assume that there are two classes of genes, Different and Not Different.

We assume prior probabilities

• p0 = Prob(Not Different)

• p1 = 1− p0 = Prob(Different)

and density functions

• f0(y), known Wilcoxon, if Not Different

• f1(y), unknown, if Different
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Mixtures

The overall probability density function is a mixture

f(y) = p0f0(y) + p1f1(y).

Bayes Theorem: P (H|D) = P (D|H)P (H)/P (D)

Applying Bayes Theorem gives posterior estimates:

p1(y) ≡ Prob(Diff |Y = y) = 1− p0f0(y)/f(y)

and

p0(y) ≡ Prob(NotDiff |Y = y) = p0f0(y)/f(y)

We can use the observed data to estimate the overall density function by

f̂(y) (typically by log-transforming the observed function and fitting a

curve.)
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Empirical Bayes

The“empirical”nature of this Bayesian idea is that we can adjust the

“prior”p0 after looking at the data, and thus obtain some reasonable

values for it. First, here is how well we fit the distribution (mentally swap

the labels, since they are wrong):
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Plot of Posterior Probability of Difference

This graph assumes p0 = 1, so no genes are different. The posterior

probability of being different becomes negative in the middle of the

graph. This results from the“empirical”nature of the estimate without

imposing a full model. We can, however, adjust p0 to prevent seeing any

negative probabilities.
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Plot of Posterior Probability of Difference

This shows posterior probabilities with p0 = 0.7, 0.8, 0.9, 1.0.

Somewhere between p0 = 0.7 and p0 = 0.8, all the posterior

probabilities become positive.
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Plot of Posterior Probability of Difference

This plot uses p0 = 0.75, which is essentially the largest value we can use

for p0 and ensure that all the posterior probabilities are positive. The

horizontal line indicates a posterior probability of 90% that a gene is

differentially expressed.
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How does this work in R?

We have implemented this idea in an R package:

http://bioinformatics.mdanderson.org/software.html
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The OOMPA home page
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The ClassComparison package

© Copyright 2004–2007, Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data



Introduction to Microarrays 30

Empirical Bayes in R

The ClassComparison package implements the empirical Bayes method

with Wilcoxon statistics. For the computations shown above, do the

following:

> require(ClassComparison)

> efron <- MultiWilcoxonTest(expression.data,

+ status)

> hist(efron)

> plot(efron, prior=c(0.7, 0.8, 0.9, 1.0),

+ signif=NULL)

> abline(h=0)

> plot(efron, prior=0.75, ylim=c(0,1))

> abline(h=0)
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How many genes are differentially expressed?

As a crude estimate, the fact that we had to take p0 = 0.75 suggests

that 25% of the genes may be different; this is consistent with the BUM

estimate from last time. With a cutoff of 90% on the posterior

probability, we get:

> cutoffSignificant(efron, prior=0.75, signif=0.9)

$low

[1] 68

$high

[1] 143

> sum(efron@rank.sum.statistics < 68)

[1] 839

> sum(efron@rank.sum.statistics > 143)

[1] 825
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The Tail-Rank Test

The Wilcoxon rank-sum test and the t-test both look at the same

property: is the mean expression the same? When looking for cancer

biomarkers, this may well be the wrong question.

Cancers that are histologically the same are not identical. Deletion of

part of chromosome 3 (3p14-p23) is found in 50% of non-small-cell lung

cancers; MYC amplification is found in 14% of stomach cancers; BRCA1

mutations are found in a subset of breast cancers; a translocation

between chromosomes 11 and 14 occurs in 35% of mantle cell

lymphomas. These genetic abnormalities directly causes specific

differences in gene expression that only occur in a subset of cancers.

Statistically, these results suggest that the distributions of gene

expression in cancer patients are likely to differ from the healthy

distributions in much more than the location of the center.
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Motivation: Subset Biomarkers

If a biomarker is only present in 20% of the cancer samples, then the

distributions might look something like this.
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Outline of The Tail-Rank Test

• Collect data on G genes from nH healthy individuals. Write Xg,i for

measurement of gene g on individual i. Assume for fixed g that

Xg,i ∼ Xg are IID.

• Specify a target value ψ for specificity.

• Estimate, for each g, a threshold τg such that Prob(Xg < τg) = ψ.

• Collect data from nC cancer patients. Count the number Yg of cancer

patients for which the measured expression level of gene g exceeds τg;

we call Yg the tail-rank statistic.

• Call g a biomarker if Yg exceeds a certain threshold.
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The null distribution

Null hypothesis: gene g is not a useful biomarker.

More precisely: the measurements on cancer patients have the same

distribution as the measurements from healthy individuals.

Then: all Yg have identical binomial distributions,

Yg ∼ Y = Binom(nC, 1− ψ).

The point here is that the probability of being in the tail is the same for

healthy and cancer, and is given by 1− ψ, where ψ was the desired

specificity.
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Even when we perform the same test for G genes, the expected

maximum value of G independent instances of Yg remains small.

Let MG = maxg=1...G (Yg) be the maximum over G IID binomial

random variables. Also, let

α = α(m) = Prob(Y > m)

γ = Prob(MG > m)

Then

1− γ = Prob(MG ≤ m)

= Prob(Y1 ≤ m, . . . , YG ≤ m)

= Prob(Y ≤ m)G = (1− α)G.
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The maximum value expected by chance

Solving,

α = 1− (1− γ)1/G.

and m is the (1− α)th quantile of a single binomial distribution:

γ = 0.01, ψ = 0.99
nC G = 100 1000 10000 100000
10 3 3 4 4

20 3 4 5 5

50 5 6 6 7

100 6 7 8 9

250 10 12 13 14

500 15 17 19 20
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Interpretation

One needs to specify two parameters in order to apply the tail-rank test.

1. ψ, the desired specificity of the biomarker

2. γ, the desired bound on the FWER

Then, given the number of genes and the number of cancer samples, the

values m in a table like the previous one represent the largest value of Yg

that we would expect to see by chance over the entire microarray. Any

gene where we observe Yg > m is a potential biomarker.
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Tail-rank and real data

We return yet again to our prostate cancer data set. We will now start

using the entire data set, which contains 14 samples from normal

prostate, 61 prostate cancer samples, and 9 samples from lymph node

metastases of prostate cancer. With this number of samples, taking

γ = 0.95 and ψ = 0.95, a gene was called a biomarker if at least 16 of

the 71 cancer samples were above the threshold.

We assumed that the log ratios of the normal prostate samples were

normally distributed. We computed 90% tolerance bounds for the 5th

and 95th percentiles, and counted the number of combined prostate

cancer samples whose log ratios fell outside these boundaries.
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Tail-rank results

We identified 1, 766 spots that were“positive”biomarkers, since they

were present at higher than normal levels in at least 16 cancer samples.

We also identified 1, 930 spots that were“negative”biomarkers, since

they were expressed at lower than normal levels in at least 16 samples. In

total, we identified 3,692 spots as candidate biomarkers.

Although the theory told us the number of false positives should be close

to zero, we decided to test this using both simulations and a permutaion

test. We simulated completely random (IID normal) data 100 times, and

we permuted the samples labels on the real data 100 times.
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Using the tail-rank test in R

We developed the tail-rank test. A preprint, along with an R package is

available on the web at

http://bioinformatics.mdanderson.org/TailRank

> require(TailRank)

> tr.test <- TailRankTest(expression.data, status,

+ direction="two")

> summary(tr.test)

A tail-rank test object in the two-sided direction.

Specificity: 0.95 computed with tolerance 0.9.

Significance cutoff: 15 based on a family-wise error

rate less than 0.05.

There are 3692 tail-rank statistics that exceed the

cutoff.
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Reviewing significance

Pretty good, when you consider that the test with the real data detected

a few thousand potential markers!
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Differential expression results

We repeated the t-test analysis on the full data set (adjusing for multiple

testing using BUM). With FDR < 0.05, we used a cutoff at

p < 0.000045 or |t| > 4.25. We detected 3,522 differentially expressed

spots. Of these, 1, 415 spots were overexpressed in prostate cancer and

2, 107 spots were underexpressed.

We also repeated the Wilcoxon test with the empirical Bayes approach.

In order to get comparable results, we selected a cutoff corresponding to

a posterior probability of 99.9%. We detected 3,627 differentially

expressed spots. Of these, 1, 498 spots were overexpressed and 2, 129
spots were underexpressed in prostate cancer.
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Comparing tests

The number of genes found by the three tests was very similar. Are they

finding the same things?

There was good agreement between the t-test and the Wilcoxon test.

More than 90% (1, 905) of underexpressed and 88% (1, 244) of

overexpressed spots that were found by the t-test were also detected by

the Wilcoxon test. So, we only need to compare one of these to the

tail-rank test.
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Comparing tests

Lower left and right = different by T, not by tail-rank

Upper center = different by tail-rank, not by T.
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Looking at the results

Since the tests give different answers, which one should we believe?

Both, since they are giving the answers to different questions!

Whether you perform one test or many, however, it is useful to look at

the expression values for some of the genes that you find, if only to make

sure you believe the results.

A useful R function for this purpose is stripchart. Here is an example

for our data set. First, we get the clinical status as an ordered factor.

> x <- ordered(clinical.info$Status,

+ levels=c('N', 'T', 'L'))
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Selecting interesting genes

Now we look at genes with small tail-rank statistics (< 2) and significant

t-statistics.

> tr.stats <- getStatistic(tr.test)

> k.weird <- tr.stats < 2 & (abs(t.stats) > 4.25)

> sum(k.weird)

[1] 38

We can select one of the“weird”genes and get its expression data.

> i.k.weird <- (1:length(k.weird))[k.weird]

> i <- sample(i.k.weird, 1)

> y <- as.vector(t(expression.data[i,]))
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Outliers can throw off the estimates

> label <- as.character(gene.info$Gene.Symbol[i])

> stripchart(y ~ x, xlab='', main=label,

+ method='jitter')
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Some genes are normally variable
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Selecting interesting biomarkers

Now we look at genes with significant tail-rank statistics and small

t-statistics (|t| < 1.25).

> k.weird <- tr.stats > 15 & (abs(t.stats) < 1.25)

> sum(k.weird)

[1] 52

We use the same idea to select some of these genes and plot stripcharts

to see if the values agree with what we tihnk the test should be doing.
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GDF11
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HACE1
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CANX
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GITA
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When T and Tail-Rank agree
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More Examples with ClassComparison

> require(ClassComparison}

> # perform t-tests

> tea <- MultiTtest(exprs(prostate), status)

> # beta-uniform mixture model

> bum <- Bum(tea@p.values)

> hist(bum)

> # Dudoit's method

> dudoit <- Dudoit(exprs(prostate), status)

> plot(dudoit)

> # significane analysis of microarrays

> sam <- Sam(exprs(prostate), status)

> plot(sam)
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