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INTRODUCTION TO MICROARRAYS 1

Lecture 13: Differential Expression, Borrowing,
and Modelling

• Testing Redux, and One More

• Comparing three or more groups

• Pairing

• Incorporating covariates

• Models
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A Rehash

Comparing two groups:

• t-tests, Wilcoxon tests

Correcting for multiple testing:

• permutation tests

• Bonferroni, BUM and Empirical Bayes

Changing the question:

• Tail Ranks and Biomarkers
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One More Difference Measure...

Still looking at one gene, and two groups of measurements
for that gene

t-tests let us say “these are different”, but do not necessarily
let us say anything about “how different are they?”

We can form confidence intervals corresponding for a given
difference (eg, diff in log ratios) and convert that confidence
interval into another interval on a scale that is more
meaningful to us (such as fold change).
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Combining CIs and Criteria

Now, there’s a neat trick that can be used here by combining
confidence intervals with the quantity of interest.

Our question till now has been “is this gene differentially
expressed between the two groups?”, but we can expand this
to include another criterion by asking “is this gene
differentially expressed between the two groups by at least a
minimal amount k?”
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The dChip Approach

For each group, assemble point estimates of the expression
levels. These point estimates are assumed to have normal
distributions. We can then form a confidence interval for the
ratio, and we can focus our attention just on those genes
where the lower bound of this confidence interval is more
than k-fold. Thus, not only are we pretty sure that the gene is
differentially expressed, but we believe that it is different by at
least a minimal amount that we can specify.
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Is this the way to go?

I don’t necessarily think the dChip answers are right, because
I think that their model has the wrong error structure, but I do
think that the confidence interval idea has some merit.

It has the practical advantage of using more than one filtering
criterion to assess “significance”.

Applying Bonferroni requires setting a very wide confidence
interval. Permutation tests still work.

c© Copyright 2004-2007, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



INTRODUCTION TO MICROARRAYS 7

Expanding our Focus

Say we have data from 3 groups that were run at the same
time, as opposed to 2. Does this change the outcome of our
initial comparison of two groups?

• Given microarray experiments on

• NA sample of type A
• NB sample of type B
• NC sample of type C

• Decide which of the G genes on the microarray are
differentially expressed between groups A and B.
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Expanding our Focus

The t-statistic from before

t =
x̄B − x̄A

sP

√
1/NA + 1/NB

.

The numerator doesn’t change, but what about the
denominator?

The pooled estimate of the standard deviation initially
includes data from just A and B, but it can be expanded to
include data from all of the groups
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The Broader Pool...

For two groups:

s2P =
(NA − 1)s2A + (NB − 1)s2B

NA +NB − 2
.

For three groups:

s2P =
(NA − 1)s2A + (NB − 1)s2B + (NC − 1)s2C

NA +NB +NC − 3
.
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What Does This Buy Us?

A more precise estimate of the variation gives us more
degrees of freedom for the t-test.

More degrees of freedom gives us a more sensitive test.

Extreme case: NA = 2, NB = 2, NC = 10.

How many differences do we see?
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Some Simulations

No differences in the data...

n.genes <- 2000
an <- 2; bn <- 2; cn <- 10
n.samples <- an + bn + cn;
type <- factor(rep(c(’A’, ’B’, ’C’),

times=c(an, bn, cn)))
data <- matrix(rnorm(n.genes*n.samples),

nrow=n.genes)
am <- apply(data[, type==’A’], 1, mean)
bm <- apply(data[, type==’B’], 1, mean)
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Some Simulations

av <- apply(data[, type==’A’], 1, var)
bv <- apply(data[, type==’B’], 1, var)
cv <- apply(data[, type==’C’], 1, var)

sp2.ab <- ((an-1)*av + (bn-1)*bv)/
(an+bn-2)

sp2.abc <- ((an-1)*av + (bn-1)*bv +
(cn-1)*cv)/(an+bn+cn-3)
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Some Simulations

t.stat.ab <- (bm - am)/
(sqrt(sp2.ab)*sqrt(1/an+1/bn))

t.stat.abc <- (bm - am)/
(sqrt(sp2.abc)*sqrt(1/an+1/bn))

p.val.ab <- sapply(t.stat.ab, function(
tv, df) {
2*(1-pt(abs(tv), df))
}, an + bn - 2)

p.val.abc <- sapply(t.stat.abc,...
, an + bn +cn - 3)

p.val.abc ¡- sapply(t.stat.abc, function( tv, df) 2*(1-pt(abs(tv),
df)) , an + bn +cn - 3)
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What Differences Are There?

None.

Added variability makes it harder to see stuff that is there, but
not easier to see stuff that isn’t there.

The benefits associated with more precision are linked to
increased sensitivity.
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Introduce some Differences

data[1:50,type=="A"] <-
data[1:50,type=="A"] + 3;

recompute means, vars, t-values and p-values

sum(p.val.ab < 0.01); # gives 19
sum(p.val.abc < 0.01); # gives 45
sum(p.val.ab[1:50] < 0.01); # gives 2
sum(p.val.abc[1:50] < 0.01); # gives 21
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Plot P-Value Differences

plot(-log2(p.val.ab[1:50]) +
log2(p.val.abc[1:50]), ... );
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Plot P-Value Differences

plot(-log2(p.val.ab[51:100]) +
log2(p.val.abc[51:100]), ... );
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What Assumptions are We Making?

The variance structures do not change between the three
groups (the means can be different).

We are already making this assumption implicitly with the
two-sample t-test.

This assumption means that I would restrict the other groups
used to those run about the same time, with the same chip
lot, etc.

That the data looks approximately normal (work on the log
scale).
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Corrections

Rank tests also work.

Bonferroni still works just fine.

BUM still works just fine.

Empirical Bayes still works just fine.

Permutations?

Permute residuals from the null model

c© Copyright 2004-2007, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



INTRODUCTION TO MICROARRAYS 20

Another Extension: Chip Lot?

Say we have data from arrays from two different lots, 1 and 2,
and that we have samples from groups A and B run on arrays
from both lots. How should we look at this?
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Another Extension: Chip Lot?

Say we have data from arrays from two different lots, 1 and 2,
and that we have samples from groups A and B run on arrays
from both lots. How should we look at this?

Well, we can still use a two-sample t-test (assuming run order
was randomized), but this might break if there are big
differences between lots.

(I’ll assume for now that the number of samples in each
group/lot combination is the same).
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Some more Simulations

n.genes <- 2000
a1n <- 2; b1n <- 2
a2n <- 2; b2n <- 2
an <- a1n + a2n; bn <- b1n + b2n;
n.samples <- an + bn;
type <- factor(rep(c(’A’, ’B’),

times=c(a1n + a2n, b1n + b2n)))
group <- factor(c(rep(c(’G1’, ’G2’),

times=c(a1n,a2n)),
rep(c(’G1’, ’G2’),
times=c(b1n,b2n))));
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Add Some Big Differences

data <- matrix(rnorm(n.genes*n.samples)
nrow=n.genes)

data[,group=="G2"] <-
data[,group=="G2"] + 8;

data[1:50,type=="A"] <-
data[1:50,type=="A"] + 4;
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Add Some Big Differences

data <- matrix(rnorm(n.genes*n.samples)
nrow=n.genes)

data[,group=="G2"] <-
data[,group=="G2"] + 8;

data[1:50,type=="A"] <-
data[1:50,type=="A"] + 4;

Is this realistic? Can groups overshadow types?
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How do we fit both type and group?

Start with an overall mean

measure deviations associated with type

measure deviations associated with group

mu <- apply(data,1,mean);
delta.type <- apply(

data[,type=="A"]-mu,1,mean);
delta.group <- apply(

data[,group=="G1"]-mu,1,mean);
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How do we fit both type and group?

fit the data, and sum the squared residuals

our.fit <- data;
our.fit[,type=="A" & group=="G1"] <-

mu + delta.type + delta.group;
our.fit[,type=="A" & group=="G2"] <-

mu + delta.type - delta.group;
our.fit[,type=="B" & group=="G1"] <-

mu - delta.type + delta.group;
our.fit[,type=="B" & group=="G2"] <-

mu - delta.type - delta.group;
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Some numbers

> our.resid <- data - our.fit;
> our.se <- sqrt(apply(our.residˆ2,

1, sum)/5);
> data[1,]
[1] 3.81 3.59 11.11 12.54
[5] -0.67 -0.17 7.05 8.95
> mu[1]
[1] 5.78
> delta.type[1]
[1] 1.99
> delta.group[1]
[1] -4.14
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Some numbers

> our.fit[1,]
[1] 3.63 3.63 11.90 11.90
[5] -0.35 -0.35 7.93 7.93
> our.resid[1,]
[1] 0.18 -0.04 -0.79 0.64
[5] -0.32 0.17 -0.88 1.03
> our.se[1]
[1] 0.79
our.t.type <- delta.type[1]/

(our.se[1]/sqrt(8));
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What do the t-stats look like?

hist(t.stat.ab,breaks=50);
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What do the t-stats look like?

hist(t.stat.type,breaks=50);
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What do the p-values look like?

hist(p.val.ab,breaks=50);
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What do the p-values look like?

hist(p.val.type,breaks=50);
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Changes When Different

plot(log2(p.val.ab[1:50]),ylim=c(-15,0),...);
points(log2(p.val.type[1:50]),col=’red’);
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Changes When Different

plot(c(51:100),log2(p.val.ab[1:50]),...);
points(c(51:100),log2(p.val.type[1:50]),...);
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Partitioning Variance: ANOVA

This general procedure of apportioning the observed
variation to the effects that gave rise to it is known as the
Analysis of Variance (ANOVA). It was introduced by
R.A. Fisher in the 1920s.

Using other groups to stabilize the variance may not be that
big a deal. Splitting off variation due to external causes
before assessing our effect of interest can be vital.
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ANOVA in R

our.lm.1 <- lm(data[1,] ˜ type + group);
our.anova.1 <- anova(our.lm.1);
our.anova.1
Analysis of Variance Table

Response: data[1, ]
Df Sum Sq Mean Sq F value

type 1 31.557 31.557 52.008
Pr(>F) 0.000799 ***

group 1 136.818 136.818 225.487
Pr(>F) 2.372e-05 ***

Residuals 5 3.034 0.607
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Replacing Data with Ranks

our.lm.1 <- lm(rank(data[1,]) ˜ ...);
our.anova.1 <- anova(our.lm.1);
our.anova.1
Analysis of Variance Table

Response: rank(data[1, ])
Df Sum Sq Mean Sq F value

type 1 8.0 8.0 20
Pr(>F) 0.0065663 **

group 1 32.0 32.0 80
Pr(>F) 0.0002911 ***

Residuals 5 2.0 0.4
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Is this Legit?

Not really. The rank theory is based on shuffling just those
values around, and requires somewhat larger sample sizes to
get close to “normal”.

The more standard rank test for any difference at all here is
the Kruskal-Wallis test. The p-values for this test are
computed by permuting ranks and counting the possible
sums.
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Kruskal-Wallis Results

our.kw <- kruskal.test(rank(data[1,]) ˜
type + group)

Kruskal-Wallis rank sum test

data: rank(data[1, ]) by type by group
Kruskal-Wallis

chi-squared = 1.3333, df = 1,
p-value = 0.2482

Not enough samples here, so we need some assumptions.
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An Extreme Case: Pairing

In many cases, we have data that are paired:
treated/untreated, before/after, primary/metastasis (same
patient), or case/control studies matched on a variety of
factors.

In this case the math simplifies rather considerably, and we
can use a simple one-sample t-test applied to the paired
differences:

x̄A − x̄B

sqrt(var(data[A]− data[B])/(nA − 1))
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The Rank Equivalent: Signed Rank Tests

As with the ANOVA table discussed above, the paired t-test
also has a rank analog, arrived at by ranking the differences
and applying a sign as A is greater than B or vice-versa. The
sum of the positive ranks gives the test statistic.

wilcox.test(data[A],data[B],paired=TRUE);
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Three Groups, Two Lots?

What if we have both scenarios at once?

Multiple groups, and known external factors?

What is the general rule?
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Including Covariates

The general extension of ANOVA is supplied by the linear
model and regression. This was actually used above:

our.lm.1 <- lm(data[1,] ˜ type + group);

where we are fitting the response (data[1,]) as a function of
the covariates at hand (type and group). The final
significance value is that associated with the effect of interest
in the full model.
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Some Standard Factors

What things might we include as explanatory covariates?

chip lot

chip

dye

run date/order
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The Broader Theme: Modelling

If we know that effects other than the ones we’re interested in
are likely to be present, it is generally worthwhile to recast
our test to explicitly incorporate (and hopefully factor out)
these other effects.

This is the idea of modelling the data.

Of course, we can’t model everything. When we can’t model
it, randomize to balance it!
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Differential Expression and Borrowing

• Modelling Redux

• Borrowing Strength Across Genes

• Combining Borrowing with Ranks

• Borrowing Tail Ranks

• Conditioning on Biology
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The Modelling Punchline

Incorporating external information can help sharpen our
inferences.

Incorporating such information often goes by the name of
modelling, but it can also be viewed as “conditioning on
relevant subsets of information”.

The crux of the problem is defining precisely what constitutes
a “relevant subset”, which includes what we mean by
“relevant”.
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Types of Conditioning

One of the more common types of conditioning is to assume
that some other quantity being measured shares some
distributional characteristics with measurements of the
quantity of interest.

In shorter words, we can use other data to give us better
estimates of standard deviations, or the shape of the
distribution, or so on. We saw this earlier with the use of a
third group of microarray measurements to sharpen
inferences about differences between the first two.
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Are Other Genes Relevant?

Are there similar characteristics to microarray measurements
of different genes?

If there are, how can we use them?

Most frequently, the answer to the first question is assumed
to be yes based on empirical observations. Occasionally, a
modelling of the underlying physical processes can further
suggest the nature of the similarity.
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An Example

Our first example: normalization.

This can assume either that “most genes don’t change”
(single scaling factor normalization) or, more stringently, that
“the quantiles of the intensity distributions should be about
the same” (loess normalization).
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Are the Assumptions Valid Here?

In general, yes. In checking normalization methods, people
have produced some nice-looking smooth curves, but the
latter in particular are working under the assumption that if
we start with genes of the same rough level of expression,
the distributions of values when nothing is going on will be
about the same.
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Other Extensions of Borrowing

borrowing strength on the p-value scale.

BUM

Empirical Bayes
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Extending this idea to diff. e.

What can we do here?

Say that we have our standard question of trying to compare
the levels of a given gene in two different groups, A and B.
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Extending this idea to diff. e.

What can we do here?

Say that we have our standard question of trying to compare
the levels of a given gene in two different groups, A and B.

How can we change the t statistic?

As before, our best guess about the central value of the gene
in each of the groups is driven by the observed values for that
gene:

x̄A − x̄B is unchanged.
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Pooling variance estimates

What can use to improve our estimate of the variance?

How about the variance of all of the genes?

This is likely to be too much.

What if we just use the genes that are close by in terms of
overall (average) intensity?

This type of procedure makes some of the same underlying
assumptions as the loess normalization, which also works
with “locally similar” data.
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What does this produce?

a stabilized variance and a “smooth” t-test.

This idea has been independently reintroduced in several
forms.
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What does this produce?

a stabilized variance and a “smooth” t-test.

This idea has been independently reintroduced in several
forms.

Baldi and Long (2001) use a Bayesian approach to trade off
between the sample variance for the gene of interest and the
pooled variance estimate. This is known as a “shrinkage”
estimate.

Newton et al (2001) use a Gamma-Poisson model which
achieves the same effect.
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Some More Papers

The “fudge factor” in the denominator of SAM is of this variety.
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Some More Papers

The “fudge factor” in the denominator of SAM is of this variety.

Baggerly et al (2001) use a Beta-binomial model based on
the use of variance derived from replicate spottings to derive
the the locally pooled variance estimate; there is no weighting
tradeoff with the actual variance observed.
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Are We Using It?

This last paper is the basis for some of the “standard
analyses” done at MD Anderson. All of the above tests were
developed in the context of cDNA microarrays.

We’ve also used it to analyze data from nylon membrane
arrays (Coombes, 2001).
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There are plausible reasons why the variance of microarray
readings should change in a smooth fashion as the overall
intensity increases.

These have to do with lognormal expression values,
background subtraction, and thresholding.
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Why might the assumption be valid here?

There are plausible reasons why the variance of microarray
readings should change in a smooth fashion as the overall
intensity increases.

These have to do with lognormal expression values,
background subtraction, and thresholding.

But we’re implicitly assuming that “most genes aren’t too
correlated” so a variance estimate derived from several
genes will be close.
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Implications of Independence

We note that this assumption of independence means that in
terms of trying to define the overall variance distribution, it is
not a good idea to choose a bunch of genes known to be
biologically related as our relevant subset. It is interesting to
explore these connections, but here we are seeking
reinforcement of a story by looking for groups of genes
having similar expression patterns.
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Does this help a great deal?

In our earlier discussions, we noted that better
characterization of the variability did improve things, but
maybe not so much.

However, that assessment was predicated on our having a
good idea of the underlying distribution to begin with. If the
data are skewed or subject to frequent outliers, things can get
worse.
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Skewness, Outliers, and Bears?

This, of course, is why we often shift to rank tests which don’t
depend on the particular shape of the distribution. But, as we
saw last time, the discrete nature of the ranks may preclude a
rank test from yielding a small p-value even when something
extreme is going on.
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Linking Borrowing and Ranks

Small p-values, however, can be obtained if we have more
“effective samples” with which to characterize the underlying
distribution, leading us to combine the idea of borrowing
strength across genes with the idea of using ranks to remain
less sensitive to the particular shape of the underlying
distribution.
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The Relative Rank Test

Oddly enough, we haven’t seen that much written about
borrowing with ranks, but here goes.

Assume that we are interested in deciding if the levels of
gene g are different between two groups A and B, and that g
is for the most part contained within a set of genes G having
similar null distributions.

The standard procedure (Wilcoxon) is to rank the nA + nB

values of g and sum the ranks of those in one of the groups
(say A). The p-values are then computed by permutation and
counting arguments.
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The Relative Rank Test

For Wilcoxon, we note that we could just as easily have
worked with the difference in average ranks for A and B,
respectively, as the total must stay fixed.
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The Relative Rank Test

For Wilcoxon, we note that we could just as easily have
worked with the difference in average ranks for A and B,
respectively, as the total must stay fixed.

Here, we rank all G ∗ (nA + nB) expression values within the
“relevant set” G, and focus on the difference between the
average ranks for gene g in groups A and B. Here, the
choice of just one sum (say the A ranks) or the difference
does matter because there are intervening values present.
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What does this potentially buy us?

The ability to get small p-values

The ability to get large p-values

The ability to differentiate between “extreme cases”

Some robustness against outliers (we lose some of this
relative to the Wilcoxon test, however) or different
distributions
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What does this potentially cost us?

accuracy, if the distributions are starkly different (eg, including
high real variability genes with low real variability genes).

The traditional borrowing of strength focuses on a single
number (such as the variance) and presumes that will be
stable. Rank sharing makes stronger distributional
assumptions.
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Some Math

What can we say about the distribution of the difference
r̄A − r̄B?

Well, if G is large, then we can effectively ignore the discrete
nature of the rank distribution. To make things easier (on me),
let’s divide the ranks by G ∗ (nA + nB) so that we have values
ranging from 0 to 1.
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Some Math

When nothing is going on, the expected difference in average
ranks is 0. The variance of a single draw from a uniform
distribution is 1/12, so the variance of the difference is

1
12

(
1
nA

+
1
nB

)
.

Approximate normality kicks in fairly quickly, and for finite
samples the shape involves the repeated convolution of
uniforms (giving B-splines).
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Some Outcomes

So, what do the results of using this test look like?

Looking at the prostate cancer data, the values returned by
the relative rank test look intermediate between those of
Wilcoxon and t-tests. By using multiple genes to more finely
partition the ranks, we recapture some of the parametric
sensitivity of the t-test. Here, the data were approximately
normal to begin with.
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Relative Tails?

Can the relative rank approach be used to help with the tail
rank test for biomarkers?

Well, in the description of the tail rank test given earlier, it was
stated that we needed to specify two things before using the
test:

ψ, the desired specificity of the biomarker, and

γ, the bound on the FWER.

The way that the relative rank approach can help is hidden in
the way the value of ψ is used.
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Defining Quantiles

Specifically, in order to use the tail rank statistic we need to
estimate, for each gene g, a threshold value τg such that
P (Xg < τg) = ψ

The difficulty is that τg represents a tail quantile of a
distribution, because we want ψ to be close to 1. Tail
quantiles are hard to estimate well unless (a) you have lots of
samples (which we typically won’t) or (b) you have some
knowledge of the parametric form of the distribution of Xg.
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Tradeoffs

The question then becomes one of which assumption is more
plausible:

that we know a parametric form well enough to characterize
tails,

or

that the distribution of expression values in a given intensity
range when nothing is going on may be similar enough
across genes for them to be productively combined.
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The Upside

If we collect the ranks for G genes as above, and focus on the
results in the control samples, then our “effective sample
size” will increase, typically to the point where we can get
point estimates of some extreme quantiles (such as 99%).
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Further Extensions

What other ways can we use the relative rank approach?

Kruskal-Wallis can be revisited.

Is there some way to build sensitivity into the tail rank
procedure? Probably not, since we’re assuming that the
behavior of the biomarker is “atypical” for the subset that it
flags as interesting.
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Sensitivity and Biomarkers

There is an asymmetry here, which reflects the asymmetry in
the question we’re asking.

For good biomarkers, we want the specificity to be high, but
we’re willing to live with low sensitivity.

The rationale for this is that the heterogeneity of the disease
suggests that if markers are to be productively used, this
should be as part of a panel.

We don’t yet know how to assemble a good and
parsimonious panel.

We may be able to assemble a good panel.
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Conditioning on Biology

Above, we’ve tended to group probes as “similar” based on
their observed expression values, giving intensity-dependent
variance estimates, normalization, and so on.

Are there other ways of gathering probes or probesets into
groups that we might expect to have similar behavior with
respect to baseline brightness and variability?
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Exploiting Sequence: PDNN and GCRMA

Some of the more effective methods work by grouping probes
in part based on their sequence.

What properties of a probe sequence might make it better at
binding, or make the bonds it does produce stronger?
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Intensity by GC Count

G-C has 3 hydrogen bonds, A-T has 2
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Defining Affinity

A model for intensity

log(PMij) = Θi + αj + εij

A formula for affinity (Naef and Magnasco, 03, Phys Rev E
v68)

α =
25∑

k=1

∑
j∈{A,T,G,C}

µjk1bk=j, µjk =
3∑

m=0

βjmx
m
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Probe Affinity by Position

Why the asymmetry?
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Invoking GCRMA in R

uses some information from the MM values! Follow outline in
BioC...

library(gcrma)
library(hgu95av2probe)
library(hgu95av2cdf)
library(affydata)
data(Dilution)
ai <- compute.affinities(cdfName(Dilution))
Dil.expr <- gcrma(Dilution,affinity.info=ai)
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