
GS01 0163
Analysis of Microarray Data

Keith Baggerly and Bradley Broom
Department of Bioinformatics and Computational Biology

UT M. D. Anderson Cancer Center
kabagg@mdanderson.org
bmbroom@mdanderson.org

15 September 2009

INTRODUCTION TO MICROARRAYS 1

Lecture 5: Introduction to R

• Limits of Canned Packages

• Introducing R: Some Background

• Installing R

• Learning About R

• Graphics in R

• Names and Attributes

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 2

The Limits of dChip

Occasionally, we may not be happy with some results of a
canned analysis package (even a good one).

We see something that looks suspicious.

We may want to ask more complex questions of the data than
are allowed for in the context of the package.

In short, we want a general package for data analysis with
some array structures built in that we can extend to deal with
our specific quirks.

Enter programming...

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 3

What is Programming?

Computers are DUMB.

Computers are incredibly, incredibly DUMB.

Computers do exactly what they are instructed to do.

Programming is creating a set of instructions for a computer
to execute.

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 4

Why is Programming Hard?

Computers are incredibly, incredibly DUMB.

Computers do exactly what they are instructed to do.

• Computers do not do what you want them to do.

• Computers do not do what you thought you told them to do.

• Computers do exactly what they’ve been instructed to do.

Because computers are so DUMB, we have to

• think of and write instructions for all possible contingincies,

• be incredibly precise when expressing those instructions.

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 5

How are Computer Instructions Expressed?

Computers natively execute instructions encoded as patterns
of 0’s and 1’s.

• Exceptionally hard for humans to follow

• Each instruction does very little

• Excessively time-consuming and expensive to write useful
programs

• Only work on one kind of computer

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 6

How are Computer Instructions Expressed?

Assembly languages use mnemonics to represent machine
instructions.

• Existing program (assembler) converts mnemonics to
machine instructions.

• Hard for humans to follow

• Each instruction does very little

• Very time-consuming and expensive to write useful
programs

• Only work on one kind of computer

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 7

How are Computer Instructions Expressed?

Third-generation languages use “high-level” commands that
do not correspond exactly to machine instructions.

• Examples: Fortran, Cobol, Algol (60, 68, W), Snobol,
BCPL, Bliss, C, C++, Java, Pascal, Modula (1, 2, 3), Lisp,
Scheme, Prolog, ML, Haskell, ...

• Existing program (compiler) converts “high-level”
commands to machine instructions.

• Relatively easy for humans to follow

• Somewhat time-consuming and expensive to write useful
programs

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 8

• Can work many different kinds of computer (using
appropriate compiler)

• Focus on execution efficiency

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 9

How are Computer Instructions Expressed?

Scripting languages use “high-level” commands that do not
correspond exactly to machine instructions.

• Examples: R, Perl, Python, Ruby, Matlab

• Existing program (interpreter) executes scripting language
commands.

• Usually provides an environment where commands can
be entered and executed one-at-a-time

• Easiest for humans to follow

• Relatively fast and inexpensive to write useful programs

• Works on many different kinds of computer

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 10

• Focus on programming efficiency

• Often most useful for a specific kind of problem (e.g. string
processing, statistical computation)

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 11

What are Programming Languages?

Why not express instructions using English (or any other
human language)?

• imprecise

• ambiguous

Programming languages are formal notations for expressing
computer instructions.

Every programming language has detailed rules that specify
what constitutes a valid program, and what that program will
do.

These rules must be adhered to.

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 12

Why R?

• R is a powerful, general purpose language and software
environment for statistical computing and graphics.

• R runs on any modern computer system (including
Windows, Macintosh, and UNIX/Linux).

• There already exists an extensive package of microarray
analysis tools, called BioConductor, written in R.

• R and BioConductor are open source and free.

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 13

Where Did R Come From?

Before R, there was S (lexicographers shudder...)

S was developed at AT&T by John Chambers and Richard
Becker (brown book).

Extended to “New S” (blue book), and then to “S-Plus” (white
book), with this last being commercialized.

More recently, there have been several versions of S-Plus,
with more modifications of the code, and additional packages.

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 14

Why Did S Catch On?

It had modules for several of the most common statistical
operations.

It had a high-level syntax, which was familiar to many of the
people working on it to begin with, and an interactive
environment.

It incorporated options for basic graphics.

It allowed for the easy definition of relevant data structures,
allowing analysts to group descriptive covariates so that the
interrelationships could be easily explored, including access
by name.

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 15

Why Did S Catch On?

It arrived at the right time.

S became popular in the academic statistics community, in
part as an alternative to SAS, and this popularity has
continued.

It allowed people to write their own modules.

Repositories of modules that people had written became
available (eg, statlib at Carnegie Mellon), extending
functionality.

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 16

Why R?

S is not free.

R is a free implementation of the S language.

• free in both price and liberty.

• there are some differences in the details.

Many of the older modules written for S have been ported
over to R.

Many new modules specifically for bioinformatics (and mostly
microarray analysis) have been collected and centralized as
part of the Bioconductor project.

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 17

The Comprehensive R Archive Network

http://cran.r-project.org

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

http://cran.r-project.org

INTRODUCTION TO MICROARRAYS 18

R Installation

After downloading R from CRAN, you start the installation
program and see this screen. Press “Next”.

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 19

R Installation

Click next to proceed.

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 20

R Installation

You can change the installation path. It may be a good idea
to choose a path name that does not include any spaces.

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 21

R Installation

You can choose which pieces to install. In general, installing
documentation and help files is a good idea.

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 22

R Installation

Decide whether to make a folder on the start menu.

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 23

R Installation

Decide whether to put an icon on the desktop.

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 24

R Installation

The program installs itself fairly quickly.

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 25

The R Gui

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 26

The R Gui

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 27

Learning About R

We’ll try to cover many of the tools that we’ll commonly use,
but we can’t cover all aspects of the language or the
packages. Fortunately, we don’t have to, because many
people have already kindly written documentation for us.

There are the manuals (if you must know all):

http://cran.r-project.org/manuals.html

and there is contributed documentation

http://cran.r-project.org/other-docs.html

The “R for Beginners” document by Emmanuel Paradis is a
very good starting point.

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

http://cran.r-project.org/manuals.html
http://cran.r-project.org/other-docs.html

INTRODUCTION TO MICROARRAYS 28

Notes on R: expressions

At heart, R is a command line program. You type commands
in the console window. Results are displayed there, and plots
appear in associated graphics windows.

R always prints a prompt (usually >) where you can type
commands. If a line does not contain a complete command,
then R prints a continuation prompt (usually +).

To evaluate an expression, enter it after the command
prompt:

> 1+3*4
[1] 13

Note that operators have precedence.

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 29

You can change the order of evaluation using parentheses:

> (1+3)*4
[1] 16

Note that the output is prefaced by the number “1” in
brackets. Output often consists of vectors, and R tells you
which item of the vector starts the output.

> 1:10+0.123
[1] 1.123 2.123 3.123 4.123 5.123
[6] 6.123 7.123 8.123 9.123 10.123

The : operator generates a sequence of numbers.

R has many operators and functions that accept and produce
vectors, matrices, and other types of data collections as
single entities.

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 30

Notes on R: variables

You can save the result of any expression in a variable, which
is similar to a “memory” in a calculator, except that

• you can have as many variables as you like, and

• you call each variable using a name of your choice.

• names must begin with a letter (a-z or A-Z),
• note that case is significant: x is not X.

• names can also contain digits (0-9), period (.), and
underscore ()

Valid names include X0, XO, pl, p1

Invalid names include var1, my-last-$, 2fast.

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 31

Notes on R: variables

To assign the value of an expression to a variable, you use
the “assign operator”, made by typing < (less than) followed
by − (minus), as in

x <- 2

which is pronounced “x is assigned 2”.

This command produces no output; it simply stores the value
“2” under the name “x”. To retrieve the value, simply use it in
an expression.

> x
[1] 2

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 32

R Functions

R has lots of built-in functions.

> y <- rnorm(10)
> sum(y)
[1] -5.863182
> sum(y)/length(y)
[1] -0.5863182
> mean(y)
[1] -0.5863182
> sd(y)
[1] 0.9856325

A function call consists of the function name followed by a list
of its parameters enclosed in parentheses. The parentheses
are required even if there are no parameters.

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 33

More About R Functions

R uses many “functions” to do things via side effects.

For example, to quit R use the q function:

> q()

You can get help on functions using (surprise) the help
function. For example,

> help(rnorm) # opens a help window
>

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 34

R Help on rnorm

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 35

Packages

How do you find out which functions are available? Every
function in R is in a package, and packages come with
documentation. To get help on the “stats” package, you would
type

help(package=stats)

This will open a help window containing one-line descriptions
of all functions in the package.

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 36

Loading Installed Packages

When R starts, it loads the packages “base”, “utils”,
“graphics”, “grDevices”, “datasets”, “methods”, and “stats”.

Other packages must be loaded explicitly, using either

• the library command, or

• make the console subwindow active, then select the menu
item “Packages”, then “Load packages...”,

• Note: Menu items in the R GUI change depending on the
active subwindow.

• A dialog box with a list of installed packages is displayed,
from which you can choose packages to load.

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 37

GUI Loading Library Packages

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 38

Browser-based R Help

You can also use the GUI menu item “Help” followed by “Html
help” to open a web browser with help information.

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 39

Where Have You Started R?

On the main menu bar, there is an option for “File”, under
which there is the option to “Change dir...”. Selecting this
option will open a new window that shows the location of R’s
current working directory and allows you to change it.

Now, the initial working directory may not be where you’ll
want to store the results of your analyses, so you will likely
want to change this.

You can also find and change R’s working directory using the
equivalent R functions:

> getwd()
[1] "Users/bmbroom"
> setwd("MicroarrayCourse/DataSets/Testing")

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 40

Scripting

There are both good and bad aspects of R’s interactive
command-line interface. On the good side, it is very flexible.
It encourages exploration, allowing you to try things out and
get rapid feedback on what works and what doesn’t.

On the bad side, record-keeping and documentation can be
difficult. If you just type merrily away, you may have a hard
time reconstructing exactly how you solved a problem. You’ll
need to devise a method for keeping better records than are
possible just by typing things at the command line.

The critical R command that makes this possible is source.

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 41

R Help for source

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 42

Using source

One method for keeping track of how you solve a problem is
to create a file containing the commands with the solution.
You then source this file to produce the answer. You can use
a “plain text” editor (like Notepad, but not Microsoft Word) to
modify the commands if they don’t work correctly the first
time around.

In newer versions of R, you can also use the built-in editor.
You create a script using the menu item “File − > New
script”, and you load an old script with the menu item “File
− > Open script...”. You can execute selected text in the
script window by typing Ctrl-R or by using the “Run line or
selection” icon. Make sure to save the script frequently!

Comments can be included by prefacing them with #.

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 43

A Simple Script

Partial solution to a homework problem

Create a vector of x-values
x <- seq(0, 3*pi, by=0.1)

Plot the sine of x as a curve instead of as a
bunch of unconnected points.
plot(x, sin(x), type=’l’)

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 44

Graphics in R

R includes a fairly extensive suite of graphics tools. There are
typically three steps to producing useful graphics.

• Creating the basic plot

• Enhancing the plot with labels, legends, colors, etc.

• Exporting the plot from R for use elsewhere

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 45

Basic plot

> x <- 0:100/10 # from 0 to 10, increment of 0.1
> plot(x, xˆ3-13*xˆ2+39*x)

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 46

Plotting curves instead of points

> plot(x, xˆ3-13*xˆ2+39*x, type=’l’)

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 47

Labeling axes

> plot(x, xˆ3-13*xˆ2+39*x, type=’l’,
+ xlab=’Time’, ylab=’Intensity’)

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 48

Repeating yourself ...

If you change your mind about how you want things like
curves or axes displayed, you often have to regenerate the
plot from scratch. There are very few things that can be
changed after the fact.

You can, however, add points, arrows, text, and lines to
existing plots.

> points(2, 34, col=’red’, pch=16, cex=2)
> arrows(4, 50, 2.2, 34.5)
> text(4.15, 50, ’local max’, adj=0,
+ col=’blue’, cex=1.5)
> lines(x, 30-50*sin(x/2), col=’blue’)

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 49

Annotated plot

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 50

> plot(x, xˆ3-13*xˆ2+39*x, type=’l’)
> lines(x, 30-50*sin(x/2), col=’blue’)
> legend(0, 80, c(’poly’, ’sine’),
+ col=c(’black’, ’blue’), lwd=2)

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 51

Saving plots to use elsewhere

In the R GUI:

• first activate the window containing a plot that you want to
save,

• on the “File” menu, choose “Save As ->”, which gives you
several choices of file format.

The most useful formats are probably:

• PNG; useful for including figures in PowerPoint or Word

• Postscript; often useful for submitting manuscripts.

• PDF; often useful for submitting manuscripts.

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 52

Graphics parameters

R includes a large number of additional parameters that can
be used to control the layout of a graphics window. For a
complete list, read the help pages on par and windows
(Mac: quartz). The figures included here so far have been
produced using the default settings. Remaining figures will be
produced after running the commands

> windows(width=8, height=5, pointsize=14)
> par(mai=c(1, 1, 0.1, 0.1), lwd=3)

which will change the default window size, the size of
characters used in the window, and the margin areas around
the plot. Rerunning the last set of plot commands will then
produce the following figure:

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 53

Same figure with new defaults

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 54

Additional graphics commands

R includes commands to generate a large number of different
kinds of plots, including histograms (hist), box-and-whisker
plots (boxplot), bar charts (barplot) ,dot plots (dotplot),
strip charts (stripchart), and pie charts (pie).

R also includes a number of commands to visualize matrices.
On the next slide, we use the data command to load a
sample data matrix that comes with R. We then produce an
image of the matrix, treating the rows and columns as x-y
coordinates and the matrix entries as intensities or heights.

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 55

Volcano

> data(volcano)
> image(volcano)

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 56

Volcano

> filled.contour(volcano, color=terrain.colors)

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 57

Names and Attributes

We’ve seen that R has a bunch of useful functions, and we
can see how these would have helped S (and then R) to
catch on. But there was more; we remarked on how S
allowed one to think about data in a more coherent fashion.
Let’s think about that a bit more.

Consider x. Initially, this symbol has no meaning; we must
assign something to it.

x <- 2

In the process of assignment, we have created an object with
the name of x. This object has the value 2, but there are
other things about objects: they have properties, or attributes.

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 58

Some Basic Attributes

> mode(x)
"numeric"
> storage.mode(x)
"double"
> length(x)
[1] 1

These are attributes that x has by default, but we can give it
others.

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 59

What’s In A Name?

Initially, nothing:

> names(x)
NULL

but we can change this

> names(x) <- c("A")
> x
A
2

This element of x now has a name! If something has a name,
we can call it by name.

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 60

Calling Names

> x[1]
A
2
> x["A"]
A
2

Admittedly, this isn’t that exciting here, but it can get more
interesting if things get bigger and the names are chosen in a
more enlightening fashion.

Let’s assign a matrix of values to x, and see if we can make
the points clearer.

So, how do we assign a matrix?

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 61

Matrix X: TMTOWTDI!

There’s more than one way to do it...

> help(matrix)

Usage
matrix(data = NA, nrow = 1, ncol = 1,

byrow = FALSE, dimnames = NULL)

even the arguments to the function have names!

Arguments to a function can be supplied by position, or by
name.

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 62

Matrix X: TMTOWTDI!

We’re going to assign the numbers 1 through 12. That means
we need to get these numbers. Some ways to do that:

> 1:12
> c(1,2,3,4,5:12)
> c(1:6, c(7:12))
> 1:12.5
> seq(from=1, to=12, by=1)
> seq(1, 12, 1)
> seq(1, 12)
> seq(by=1, to=12, from=1)

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 63

Matrix X: TMTOWTDI!

> x <- matrix(1:12,3,4)
> x <- matrix(data = 1:12, nrow = 3, ncol = 4)
> x

[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

The numbers in brackets suggest how things should be
referred to now:

> x[2,3]
[1] 8
> x[2,]
[1] 2 5 8 11

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 64

Matrix X: TMTOWTDI!

> x[,3]
[1] 7 8 9
> x[3,1:2]
[1] 3 6
> x[3,c(1,4)]
[1] 3 12
> x[2, x[2,] > 6]
[1] 8 11

But what about names?

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 65

Naming x

> rownames(x)
NULL

> rownames(x) <- c("Gene1","Gene2","Gene3")
> x

[,1] [,2] [,3] [,4]
Gene1 1 4 7 10
Gene2 2 5 8 11
Gene3 3 6 9 12

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 66

Naming x

> colnames(x) <- c("N01","N02","T01","T02")
> x

N01 N02 T01 T02
Gene1 1 4 7 10
Gene2 2 5 8 11
Gene3 3 6 9 12

One more thing – names can be inherited!

> x["Gene2",]
N01 N02 T01 T02

Gene2 2 5 8 11

c© Copyright 2004–2009, KR Coombes, KA Baggerly, and BM Broom GS01 0163: ANALYSIS OF MICROARRAY DATA

