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Lecture 10: Differential Expression

e Student’s t-test

e Simulating nothing

e Family-wise error rate

e Permutation tests

e |s FWER too conservative?

e Significance Analysis of Microarrays (SAM)
e Beta-uniform mixture model

e Empirical Bayes
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Class Comparison

Perhaps the most common use of microarrays is to determine which
genes are differentially expressed between prespecified classes of
samples. In general, we refer to this as the class comparison
problem. In this lecture, we start looking at the simplest case:

e Given microarray experiments on
e N4 samples of type A
e Np samples of type B

e Decide which of the G genes on the microarray are differentially
expressed between the two groups.
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Student’s t-test

In many cases, we analyze microarrays starting with the “one gene at
a time" approach. That is, we first look for a reasonable way to
analyze the same problem when we only have one gene, and then
figure out how to adapt that method to thousands of genes.

The one-gene version of the class comparison problem with two
classes simply asks, “is this gene different in the two classes?” A
classic analytical method is Student’s t-test. We start by estimating
the mean and standard deviation in both classes:
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Weighted difference in means

Next, we pool the estimates of standard deviation from the two
groups:

(Na—1)s% + (N —1)s%
Nas+ N — 2 .

2, =

The two-sample t-statistic is the difference in means, weighted by the
pooled estimate of the standard deviation and the number of
samples:

B rg — A
sp\/1/No+1/Np

Question: Why not just use the difference in means?

© Copyright 2004-2009, KR Coombes, KA Baggerly and BM Broom GS01 0163: Analysis of Microarray Data



Differential Expression

Microarray aside: which scale is best?

Before answering the question, we offer a slight reinterpretation.
Most (but not all) analysts believe that microarray data should be
transformed by computing logarithms before testing for differential
expression. The key mathematical fact supporting this belief is that
the logarithm turns multiplication into addition:

log(zy) = log(x) + log(y).
In particular
log(2x) = log(x) + log(2), log(z/2) = log(x) — log(2).

Differences on the log scale can be interpreted as “fold change” on
the original scale of the data. Increases and decreases by the same

fold change are treated equally on the log scale.
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T-statistics

Three ways to get a larger t-statistic:

e Bigger difference in means
e Smaller standard deviation

e More samples
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What about p-values?

Null hypothesis: The difference in mean expression between the two
groups Is zero.

Two-sided alternative hypothesis: The difference in mean expression
IS non-zero.

P-value = probability of seeing a t-statistic this extreme under the
null hypothesis = area in both tails of the distribution.

Interpretation: if you repeat the same experiment many times (with
the same number of samples in the two groups), the p-value
represents the proportion of times that you would expect to see a
t-statistic this large.

BUT: Computing a t-statistic for each gene on a microarray is like
performing the same experiment many times.
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Simulating nothing

We simulated a microarray data set with no differences:

sp2 <- ((an - 1) * av + (bn - 1) * bv)/(an + bn -
2)

> n.genes <- 10000

> n.samples <- 20

> an <- n.samples/2

> bn <- n.samples/2

> type <- factor(rep(c("A", "B"), times = c(an, bn)))
> data <- matrix(rnorm(n.genes * n.samples), nrow = n.gel
> am <- apply(datal, type == "A"], 1, mean)

> bm <- apply(datal, type == "B"], 1, mean)

> av <- apply(datal, type == "A"], 1, var)

> bv <- apply(datal, type == "B"], 1, var)

>

+
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The t distribution

> t.stat <- (bm - am)/sqrt(sp2)/sqrt(1/an + 1/bn)
> hist(t.stat, breaks = 100, xlab = "")

Histogram of t.stat
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P-values are uniformly distributed

> p.val <- sapply(t.stat, function(tv, df) {
+ 2 ¥ (1 - pt(abs(tv), df))

+ }, an + bn - 2)

> hist(p.val, breaks = 100, xlab = "")

Histogram of p.val
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How significant is nothing?

Are we finding anything other than what we expect?
> sum(p.val < 0.05) # observed

[1] 519

> 0.05 * n.genes # expected

[1] 500
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Estimating nothing

If there are no real differences, and if we can treat different genes as
though they are “replicates” of the same experiment, then

1. Number of genes with p < « is approximately a./V.

2. The distribution of p-values is uniform.
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Statistical error types

Statisticians (on average) are obsessed with errors. They also tend to
use circumlocutions that make it more difficult for non-statisticians
to understand them. For example, “rejecting the null hypothesis”
means “calling a gene differentially expressed".

Test Result | Truly Different | Truly Unchanged
Positive True Positive (TP) | False Positive (FP)
Type | Error
Negative False Negative (FN) | True Negative (TN)
Type Il Error

P-value = Prob(Type | Error)

To control Type Il Errors (FN), you have to increase the sample size
to ensure enough power to detect the true differences.
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Family-wise error rate (FWER)

FW ER = probability of getting at least one FP when performing
many statistical tests = probability of making at least one mistake

Bonferroni adjustment: To achieve F'W ER < a when looking at GG
genes, restrict on a per-gene basis to p < a/G.

> bonferroni <- 0.05/n.genes
> bonferroni

[1] 5e-06
> sum(p.val < bonferroni)

[1] O
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What happens with real data?

Reference: Lapointe et al. Gene expression profiling identifies
clinically relevant subtypes of prostate cancer. Proc Natl/ Acad Sci

USA. 2004; 101: 811-816.

Two-color arrays processed with local background subtraction, loess
normalization, and taking log ratios to a reference channel.

e 41 samples of apparently normal prostate

e 62 samples of prostate cancer

e 9 samples of lymph node metastases from prostate cancer

We randomly selected ten samples of normal prostate and ten
samples of prostate cancer, and performed two-sample t-tests.
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Real p-values

Histogram of p.val
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There seems to be an overabundance of small p-values, causing the
distribution to differ considerably from uniform.
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Counting Small

> n.genes <- nrow(data)

> n.genes

[1] 42129

> sum(p.val < 0.05) # observed
[1] 6316 (2931 if p < 0.01)
> 0.05 * n.genes # expected
[1] 2106.45 (421.29 if p < 0.01)
> bonferroni <- 0.05/n.genes

> bonferroni

[1] 1.186831e-06

> sum(p.val < bonferroni)

[1] 42
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Simulating something

We also simulated two data sets with differences:

1. Data Set |

e 10 arrays per group, 2000 genes per array

e Gene expressions in each group are independent, N (u, 1).
e In group A, take all ua = 0.

e 50 genes are different, with |ua — up| ~ 5 * Beta(2,8).

2. Data Set ||

e 10 arrays per group, 10, 000 genes per array
e Mean expression a4 ~ Exp(1/20).
e 100 genes are different, with 4/ ~ 149 % Beta(3,7).
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Bonferroni Correction: Results

e Data Set | (normal model)

e Truth: 50 genes differ out of 2000
e With v = 0.05, makes 21 positive calls, 21 correct.

e Data Set Il (exponential + noise)

e Truth: 100 genes differ out of 10, 000
e With o = 0.05, makes 25 positive calls, 25 correct.

© Copyright 2004-2009, KR Coombes, KA Baggerly and BM Broom GS01 0163: Analysis of Microarray Data



Differential Expression 20

Begining to assess the model

A key assumption of the Bonferroni approach is that a uniform
distribution adequately describes the p-values when there are no
differentially expressed genes present.

We can start testing how good the uniform model is by performing a
permutation test. In this case, we simply scramble the labels on the
samples.

In the prostate example, we have ten normal and ten cancer samples.
We choose ten samples at random to call “normal”, and call the other
ten “cancer’, and we repeat the analysis with the two-sample t-test.
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P-values for scrambled sample labels

Histogram of p.val
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Nearly uniform, with a slight bulge near p = 0.01. This might be
attributable to an imbalance of “truth” in the permuted groups.
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Scrambled data is insignificant

> sum(p.val < 0.05) # observed
[1] 2257

> 0.05 * n.genes # expected
[1] 2106.45

> sum(p.val < 0.01) # observed
[1] 406

> 0.01 * n.genes # expected
[1] 421.29

> sum(p.val < bonferroni)

[1] ©
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Should we believe the p-values?

There is another potential difficulty with using the Bonferroni
approach: in order to get a significant gene, we need extremely small
p-values. That means we have to very accurately estimate the tails
of the distribution, which is a fairly difficult thing to do unless one of

two fairly unlikely things happens:

1. The number of samples is extremely large, or

2. The distribution of expression values is almost perfectly described

by a normal distribution.

We can use permutations to get around the second problem, but that
only makes the first problem worse.
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Dudoit’s permutation p-values

Reference: Dudoit et al. Statistical methods for identifying
differentially expressed genes in replicated cDNA microarray
experiments. Statistica Sinica, 2004; 12: 111-139.

e Perform t-test for each gene ¢ and sort the absolute t-statistics,
tg].

e Repeat many times:
e Randomly permute sample labels.

e Compute new t-statistics

e Adjust p-values based on empirical joint distribution of t-statistics
to control F'IWER.
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Dudoit’s Method: Results

e Data Set | (normal model)

e Truth: 50 genes differ, out of 2000.
e With v = 0.05, makes 21 positive calls, 21 correct.

e Data Set Il (exponential + noise)

e Truth: 100 genes differ, out of 10, 000
e With o« = 0.05, makes 21 positive calls, 21 correct.
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Is FWER too conservative?

1. In the prostate data set, Bonferroni with F'W ER < 5% flagged
42 genes.

2. With an uncorrected p < 1%, the model underlying the Bonferroni
correction predicts only 421 genes, but we actually observe 2931.

3. With an uncorrected p < 5%, the model underlying the Bonferroni
correction predicts only 2106 genes, but we actually observe 6316.

Are there only 42 differentially expressed genes among the 42, 129
spots on this array, or are there 2510 = 2931 — 4217 Or maybe

even 4210 = 6316 — 21067
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Opportunity cost

The Bonferroni correction only considers Type | Errors. Microarray
experiments, however, are often used for discovery. Findings are
usually confirmed by performing additional experiments (typically,
real-time PCR). In some cases, the “opportunity cost” of missing out
on a discovery (by making a Type Il Error) is greater than the
“validation cost” of finding some false positives (Type | Errors) in
your list of genes.

Like anything else, there are trade-offs. By choosing a smaller
significance cutoff for the p-values, you get fewer false positives but
more false negatives. By choosing a larger cutoff, you get more false
positives and fewer false negatives.
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The false discovery rate

FDR = FP/(TP + FP) = fraction of false positives among all
genes called differentially expressed by the test. Here is a crude way
to estimate FDR: Assume the uniform model for p-values holds under
the null hypothesis. The the expected number of false discoveries at
a given p-value cutoff is pGG. If the total number of discoveries is V/,
then we can estimate FDR = pG/V. In the prostate cancer
example, this gives

e When p =0.05, FDR = 2106/6316 = 0.3334.

e When p =0.01, FDR = 421/2931 = 0.1436.

This estimate is not very good, it overestimates the number of errors
by not accounting for the fact that there seem to be some true
discoveries.
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Significance analysis of microarrays (SAM)

Reference: Tusher et al. Significance analysis of microarrays applied
to the ionizing radiation response. PNAS, 2001; 98: 5116-5121.

e Compute modified t-statistics (increase o to minimize coefficient
of variation across the array).

e Recompute t-statistics based on balanced permutations (each
group equally represented) of the sample labels.

e Decide on significance cutoff based on quantile-quantile plot of
observed versus expected t-statistics.

e Estimate FDR from the permutations.
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SAM, Data Set |
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SAM, Data Set Il

10

Observed T Statistics
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SAM: Results

e Data Set | (normal model)

e Truth: 50 genes differ, out of 2000.
e With FFDR = 0.10, makes 32 positive calls, 30 correct.

e Data Set Il (exponential + noise)

e Truth: 100 genes differ, out of 10,000
e With FFDR = 0.10, makes 41 positive calls, 37 correct.

Detects more true positives in simulated data than Bonferroni or
Dudoit, at some cost in false positives. Like Dudoit’'s method, it is

computationally intensive.
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Beta-uniform mixture model (BUM)

Reference: Pounds and Morris. Estimating the occurrence of false
positives and false negatives in microarray studies by approximating

and partitioning the empirical distribution of p-values.
Bioinformatics, 2003: 19: 1236-1242.

Histogram of p-values
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The BUM Theory
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|ldea: Model the p-values as a mixture of a uniform distribution and a

beta distribution. Estimate mixture parameters. Obtain estimates of

TP, FP, FN, TN as a function of signif

icance cutoff.
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BUM, Data Set Il
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BUM: Results

e Data Set | (normal model)

e Truth: 50 genes differ, out of 2000.
e With FFDR = 0.10, makes 33 positive calls, 31 correct.
e Estimates that 2.8% of genes are different (truth = 2.5%)

e Data Set Il (exponential + noise)

e Truth: 100 genes differ, out of 10,000
e With FFDR = 0.10, makes 40 positive calls, 37 correct.
e Estimates that 0.7% of genes are different (truth = 1.0%)

Results equivalent to SAM, with much less computation.
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BUM results on prostate data

We have already seen the histogram, and the fit of the beta-uniform
mixture.

e With FFDR < 0.01, calls 427 genes differentially expressed.
e With FFDR < 0.05, calls 1513 genes differentially expressed.

e With FFDR < 0.10, calls 2727 genes differentially expressed.

Overall, BUM estimates that 26% of the genes are differentially
expressed at some level. (That's more than 10,000 genes!)
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Empirical Bayes

There are other ways to exploit the fact that we have thousands of
tests in order to improve our estimates of what's going on. Here, we
encounter a synthesis of two views of statistics: frequentist and
Bayesian.

Reference: Efron and Tibshirani. Empirical Bayes methods and false
discovery rates for microarrays. Genetic Epidemiology, 2002; 23:

70-36.
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Basic idea

Assume that there are two classes of genes, Different and Not
Different. We assume prior probabilities

e po = Prob(Not Different)
e p; = 1 — pg = Prob(Different)
and density functions

e fo(y), known, if Not Different (Null)

e f1(y), unknown, if Different
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Mixtures

The overall probability density function is a mixture

f) =pofoly) +p1f1(y).

Bayes Theorem: P(H|D) = P(D|H)P(H)/P(D)

Applying Bayes Theorem gives posterior estimates:

po(y) = Prob(Not Diff|Y = y) = pofo(y)/f(y)

and
p1(y) = Prob(Dift|Y =y) =1 —pofo(y)/f(y)

We can use the observed data to estimate the overall density
function by f(y) (typically by log-transforming the observed function
and fitting a curve.)
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Empirical Bayes

The “empirical” nature of this Bayesian idea is that we can adjust the
“prior” pg after looking at the data, and thus obtain some reasonable
values for it. First, here is how well we fit the distribution (mentally
swap the labels, since they are wrong):
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Plot of Posterior Probability of Difference
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This graph assumes pg = 1, so no genes are different. The posterior
probability of difference goes negative! This results from the
“empirical” nature of the estimate without imposing a full model. We
can, however, adjust pg to prevent negative probabilities.
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Plot of Posterior Probability of Difference

L=
I
—_— L ]
=
L
2
=
£
o =
o L]
Lo
S
T T T T T
s0 80 100 120 140
Rank Sum

This shows posterior probabilities with pg = 0.7,0.8,0.9, 1.0.
Somewhere between p0 = 0.7 and pg = 0.8, all the posterior
probabilities become positive.
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Plot of Posterior Probability of Difference
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This plot uses pg = 0.75, which is essentially the largest value we
can use for pg and ensure that all the posterior probabilities are
positive. The horizontal line indicates a posterior probability of 90%
that a gene is differentially expressed.
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How does this work in R?

We have implemented this idea in an R package:

http://bioinformatics.mdanderson.org/software.html

%3 MDACC: Cancer Genomics: Software - Mozilla Firefox

F'HE UNIVERSITY OF TEXAS

MD ANDERSON
CANCER CENTER
Making Cancer History™

Overview
People
Resources
Activities
Contact Us

Research
Awards
Publications
Technical
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Supplements
Public Data
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Software

Services
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S3DB New!

GeneCards
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File Edit Wiew Go Bookmarks Tools  Help
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| | Google | | Projeck Tracker t(-j Entrez-PubMed | | MDACC Bioinfo | | Microarray Core Faci... | | wiki: BiomarkerJour. ..

M. O. Anderson

AHO02918

|
|
! L35
|

Bioinformatics

Software

This area of the web site will be used to store software tools that we are making
publicly available. All tools are copyrighted by the University of Texas M. D. Anderson
Cancer Center and by the individual employees of the cancer center who helped
develop them. The tools are freely available for personal use in research projects;
however, anyone wishing to use them or modify them for use in a commercial project
should contact M. D. Anderson.

Available Software

OOMPA
OOMPA is an object-oriented microarray and proteomics analysis library
implemented in R using S4 classes and compatible with BioConductor.
SuperCurve
SuperCurve is a standalone package, bundled with OOMPA, that provides tools for
the analysis of reverse phase protein arrays.
Wavelet-Based Functional Mixed Models
Code to obtain MCMC samples for wavelet-based functional mixed model method

P

Done
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The OOMPA home page

%2 00MPA: Object-Oriented Microarray and|Proteomic Analysis - Mozilla Firefox

File Edit Wiew Go  Bookmarks  Tools  Help

<::| - I_: - @ @ L1 http:fibicinformatics.mdanderson, orgfSoftware fOOMPAS A @ Go @,

|| Google | | Project Tracker «(-j Entrez-PubMed | | MDACC Bioinfo | | Microarray Core Faci...

OOMPA

Object-Oriented Microarray and Proteomic Analysis

OOMPA is a suite of R libraries for the analysis of gene expression (RNA) microarray data and of
proteomics profiling mass spectrometry data. OOMPA uses S4 classes to construct object-oriented tools
with a consistent user interface. All higher level analysis tools in OOMPA work with the exprset classes
defined in BioConductor. The lower level processing tools offer an alternative to parts of BioConductor,
but can also be used to enhance the existing BioConductor packages.

The packages included in the current release (OOMPA 1.1) are

oompaBase
Class unions and generic functions for OOMPA.
PreProcess
Basic functions for microarray pre-preocessing, including objects that remember their history.
ClassComparison
Classes and methods for "class comparison" problems using microarray or proteomics data, including
tests of differential expression.
ClassDiscovery
Classes and methods for "class discovery" with microarray or proteomics data.
TailRank
Implements the tail-rank statistic for selecting biomarkers from a microarray data set, an efficient
nonparametric test focused on the distributional tails.

The OOMPA suite of R libraries is the successor to the earlier Object-Oriented Microarray Analysis Library
(OOMAL), which was originally written for S-Plus 2000. The incorporation of routines to analyze 3
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The ClassComparison package

3 00MPA: Object-Oriented Microarray and Proteomic Analysis - Mozilla Firefox
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ClassComparison

include

o Two-sample t-test
<~ Fixed-effects linear models with ANOVA

controlling the false discovery rate (FDR).
¢ Wilcoxon rank-sum test with empirical Bayes
o Signficance Analysis of Microarrays (SAM)
< Total Number of Misclassification (TNoM)

< Smooth t-test
Online help, manuals, source, and binary libraries are available.

* Online Help

* Manual

® Source Code

* Windows Binary Library
# Sparc Binary Library

~ |

The ClassComparison library provides tools to perform "class comparison" analyses of
microarray or proteomics data. Class comparison problems start with two or more
known groups of samples, and ask the analyst to find genes or proteins that are
different in some way between the two groups. Methods implemented in this release

¢ Beta-uniform mixture (BUM) model to account for multiple testing by

< Dudoit's adjustment of p-values to control the family-wise error rate (FWER)

v @ s B,
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