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Lecture 25: SNP Arrays

• SNPs, GWAS, HapMap project

• Affymetrix SNP Arrays
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Single Nucleotide Polymorphisms (SNPs)

Two unrelated people share about 99.5% of their DNA
sequence.

One of the most common differences is that at specific sites
some people may have (for instance) a G, while others might
have an A. These sites are called single nucleotide
polymorphisms, or SNPs.

Each of the two bases that can occur at the SNP is called an
allele. (A third or even fourth allele is possible, but very
uncommon. We will ignore the possibility hereafter.)

By convention, the most common allele at each SNP is called
A and the less common SNP is called B.
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Genotypes

Since there are two copies of each chromosome (except for
X and Y in males), there are three possible pairs of alleles for
each SNP: AA, AB, and BB.

For each SNP, an individual’s genotype is the specific
combination of alleles that it possesses.
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Haplotypes

Chromosomes are not inherited as indivisible units. Through
a process known as recombination the descendant’s
chromosome contains segments of DNA taken randomly
from the two different parent chromosomes.

Segments of DNA that are far apart are inherited
independently, whereas segments that are close together
tend to be inherited together.

Segments that are common to many people are called
haplotypes. The distribution of haplotypes varies between
populations and geographic regions.

Sequences of adjacent SNPs can be used to model
haplotypes.
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Genome-wide Association Studies

Many genome-wide association and gene-environment
interaction studies are being undertaken in order to find
genes associated with complex, heritable disorders, including
cancer.

Since there are about 10 million common SNPs, testing every
individual for all SNPs would have been extremely expensive.
(NGS might change that.)

By identifying tag SNPs that uniquely identify the common
haplotypes, much less testing is required.

It is estimated that about 300,000 to 600,000 tag SNPs
contain most of the information about the patterns of genetic
variation.
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International HapMap Project

The International HapMap project is a recent, large-scale
effort to facilitate GWAS studies:

• Phase 1: 269 samples, 1.1 M SNPs

• Phase 2: 270 samples, 3.9 M SNPs

• Phase 3: 1115 samples, 1.6 M SNPs

Phase 3 platforms:

• Illumina Human1M (by Wellcome Trust Sanger Institute)

• Affymetrix SNP 6.0 (by Broad Institute)
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HapMap Phase 3 Samples
label population sample # samples QC+ Draft 1
ASW* African ancestry in SW USA 90 71
CEU* North/West European in Utah 180 162
CHB Han Chinese in Beijing 90 82
CHD Chinese in Denver 100 70
GIH Gujarati Indians in Houston 100 83
JPT Japanese in Tokyo 91 82
LWK Luhya in Webuye 100 83
MEX* Mexican in LA 90 71
MKK* Maasai in Kinyawa 180 171
TSI Toscans in Italy 100 77
YRI* Yoruba in Ibadan 180 163

1301 1115
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Data Access

Unlike the TCGA SNP data, the HapMap project data is
available from
http://hapmap.ncbi.nlm.nih.gov/downloads/raw data/?N=D.

We will use the CUPID.tgz dataset in the
hapmap3 affy6.0 subdirectory. This archive contains 77
CEL files from the Affymetrix SNP 6.0 platform.
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Affymetrix SNP Chips

Mapping 10K (1 array, 18 µm feature size)

Mapping 10K v2.0

Mapping 100K (2 arrays, 8 µm feature size)

Mapping 500K (250K Nsp and 250K Sty, 5 µm feature size)

SNP 5.0

SNP 6.0
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Affymetrix SNP 6.0

More than 906,600 SNPs:

• Approx. 482,000 SNPs derived from previous generation
arrays

• Additional tag SNPs from early phase of HapMap project

More than 946,000 probes for detecting copy number
variation:

• 202,000 probes targetting 5,677 known regions of copy
number variation

• more than 744,000 additional evenly spaced SNPs to
enable detection of novel copy number variation
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Affymetrix SNP 6.0 Assay

Affymetrix Genomewide SNP 6.0 Datasheet
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SNP Chip Design

The SNP chip’s basic design is similar to that of expression
arrays, in that an array of 25 bp oligonucleotide sequences
(features) is laid across the surface of the chip. The sample’s
DNA is amplified, a marker is attached, and hybridized to the
array. The array is scanned to quantify the relative amount of
sample bound to each feature.

For SNPs, there is a pair of probes: one for each of the
alleles.

For non-polymorphic CNV probes, there is just a single
probe.

On early chips there were both PM and MM probes for each
of the two alleles, making a quartet.
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Early chips contained multiple quartets per SNP at different
offsets (e.g. -4, -2, -1, 0, 1, 3, 4) to the SNP’s location.

Recent chips just use two replicates of the PM pair that best
distinguishes the two alleles.
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Genotyping Algorithms

ABACUS

MPAM (Affy 10k)

DM (Affy 100k)

BRLMM (Affy 500k)

Birdseed (Affy SNP 6.0)

CRLMM
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MPAM

Liu et al., Bioinformatics 19(18), 2003, 2397–2403.

Detection Filter:

Calculate discrimination score (DS) for each probe pair:

DS = (PM −MM)/(PM +MM)

ds
(sA)
i is DS score of i’th probe pair for allele A on the sense

strand.

ds
(tB)
i is DS score of i’th probe pair for allele B on the

antisense strand.

DS of A allele d(sA) = median(d(sA)
i ).

DS of SNP d = max(min(d(sA), d(tA)),min(d(sB), d(tB))).
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Feature Extraction

Relative allele signal (RAS) for the ith probe quartet of the
sense strand:

s
(s)
i = A

(s)
i /(A(s)

i +B
(s)
i )

where
A

(s)
i = max(PM (sA)

i −MM
(s)
i , 0)

B
(s)
i = max(PM (sB)

i −MM
(s)
i , 0)

MM
(s)
i = (MM

(sA)
i +MM

(sB)
i )/2

RAS for sense strand s(s) = median(s(s)i )

RAS for antisense strand s(t) = median(s(t)i )
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Feature Space

The pair (s(s), s(t)) is a point in a unit square feature space.

Points close to (1, 1) should be AA.

Points close to (0, 0) should be BB.

Points close to (0.5, 0.5) should be AB.
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Genotype Clusters are SNP Dependent

In real data, the locations, sizes, and shapes of the genotype
clusters depend on the SNP concerned:

• affinity of target and probe depend on the sequence,

• cross hybridization.

Therefore, genotype cluster regions must be estimated for
every SNP separately using a large training data set.
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Classification with MPAM

For each SNP, use (modified) PAM to cluster features in
training data into k groups.

For genotyping, we expect 1 to 3 groups.

Assign genotypes based on median coordinates of the
clusters.

Use average silhouette width to determine quality of the
classification.

c© Copyright 2004–2009, KR. Coombes, KA. Baggerly, and BM. Broom GS01 0163: ANALYSIS OF MICROARRAY DATA



INTRODUCTION TO MICROARRAYS 20

PAM fails with very different allele frequencies

With very different cluster sizes, PAM tends to split largest
cluster:

PAM was modified to penalize small between-group
distances.
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Post-call filter to exclude bad calls
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Dynamic Model-based Algorithm (DM)

Di et al., Bioinformatics 21(9), 2005, 1958–1963.

Introduced to overcome perceived deficiences in MPAM:

• Large number of training samples required to observe all
three phenotypes and build accurate empirical models.

• SNPs with low minor allele frequency are difficult to model
accurately.

• Requires manual inspection of selected SNPs.

• Not flexible enough to accommodate additional
improvements.
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DM

DM:

• aggregates multiple SNP quartets into SNP genotype call
and confidence metric

• stratifies states into four models: Null, A, AB, and B.

• uses a one-sided Wilcoxon signed rank test to produce four
p-values, one for each model

DM also includes methods for SNP screening and probe
reduction, and enables SNP screening using a relatively
small sample set.
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Four Models

Four states for each quartet:

Null: No probe brighter than the rest. All assumed to be
background.

A or B: Only PM probe for A (or B) is bright. Other 3 probes
assumed to be background.

AB: Both PM probes are bright. Two MM probes assumed to
be background.

Which state is most likely?
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Likelihood Models

Assume all probes in a quartet are independent, and signal
intensities are i.i.d. normal random variables.

For each probe in a quartet (x = 1, 2, 3, 4):
µx mean
σ2

x variance
nx number of pixels
µ̂x estimated mean assuming model m
σ̂2

x estimated variance assuming model m

Log likelihood given by

L(m) = −1
2

4∑
x=1

nx

[
ln(2πσ̂2

x) +
σ2

x + (µx − µ̂x)2

σ̂2
x

]
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Estimated mean and variance for Null model

For the Null model, all probes are background and evenly
distibuted, hence:

µ̂1 = µ̂2 = µ̂3 = µ̂4 =
∑4

x=1 nxµx∑4
x=1 nx

σ̂2
1 = σ̂2

2 = σ̂2
3 = σ̂2

4 =
∑4

x=1 nx[σ2
x + µ2

x]∑4
x=1 nx

− µ̂2
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Estimated mean and variance for model A

For model A, the PM for A is foreground, the other three are
background:

µ̂1 = µ1

σ̂2
1 = σ2

1

µ̂2 = µ̂3 = µ̂4 =

∑
x 6=1 nxµx∑

x 6=1 nx

σ̂2
2 = σ̂2

3 = σ̂2
4 =

∑
x 6=1 nx[σ2

x + µ2
x]∑

x 6=1 nx
− µ̂2

Similarly for model B.
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Estimated mean and variance for model AB

For model AB, the PMs for A and B are foreground, the two
MM are background:

µ̂1 = µ̂3 =
n1µ1 + n3µ3

n1 + n3

σ̂2
1 = σ̂2

3 =
n1[σ2

1 + (µ̂1 − µ1)2] + n3[σ2
3 + (µ̂3 − µ3)2]

n1 + n3

µ̂2 = µ̂4 =
n2µ2 + n4µ4

n2 + n4

σ̂2
2 = σ̂2

4 =
n2[σ2

2 + (µ̂2 − µ2)2] + n4[σ2
4 + (µ̂4 − µ4)2]

n2 + n4
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SNP Level Aggregation

Different probe quartets might support different states. Need
to aggregate robustly over all probe quartets.

Score for model m:

S(m) = L(m)−max{L(k), k = 1, 2, 3, 4, k 6= m}

For each model m generate a vector of the scores for all n
quartets in the SNP:

Vm = {S1(m), S2(m), . . . , Sn(m)},m = Null,A,AB,B
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Finding most likely model

Use Wilcoxon signed rank test to evaluate support for each
model across all probe quartets.

For all 4 models, apply to hypotheses H0 : median(Si(m)) = 0
versus H1 : median(Si(m)) > 0 to obtain 4 p-values.

The least p-value, provided it is below a threshold,
determines the genotype call and the p-value is the
confidence of that call.

If the least p-value exceeds the threshold, or the best model
is null, the final genotype is no-call.

c© Copyright 2004–2009, KR. Coombes, KA. Baggerly, and BM. Broom GS01 0163: ANALYSIS OF MICROARRAY DATA



INTRODUCTION TO MICROARRAYS 31

BRLMM

BRLMM

• performs multiple chip analysis: simultaneous estimation of
probe effects and allele signals for each SNP.

• estimates genotypes by a multiple-sample classification,
borrowing information from other SNPs as necessary to
make better predictions.

BRLMM makes weaker assumptions about probe behavior,
making it more robust on real-world data.
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BRLMM Approach

1. Normalize probe intensities and estimate allele signals for
each SNP

2. Use DM to make an initial guess at each SNPs genotype

3. Select SNPs containing a minimum number of all three
genotypes

4. Transform allele signal estimates into a better behaved 2D
space

5. Use selected SNPs to estimate a prior distribution of typical
cluster centers and variance-covariance matrices
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6. Re-evaluate each SNP, combining initial genotype guesses
with prior information in an ad-hoc Bayesian procedure to
derive a posterior estimate of cluster centers and variances

7. Determine genotype and confidence score for each
observation based on its Mahalanobis distance from the
three cluster centers
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Normalization and Probe Intensities

Use quantile normalization at the feature level.

No background correction used. (For most fragments
containing SNPs, target levels are well above background.)

Use log-scale transformation for the PM intensities.

Use median polish to fit feature effects to the data and obtain
a signal.

Summarize probes into two values, representing A and B
signals.
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Clustering Space Transformation
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Clustering Space Transformation

MA transformation isolates most of the difference between
genotypes onto the M axis, but artificially makes homozygous
clusters more broadly variable than heterozygous clusters.
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Clustering Space Transformation

Transformed Contrast transformation can be used to balance
the variability in homozygous and heterozygous clusters.
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Genotyping

Model three clusters (for AA, AB, BB) defining cluster centers
and covariance matrices.

Determine distance from each test point to each cluster
center using Mahalanobis distance (which takes into account
variation and covariation in the cluster along each axis).

Confidence assigned to call is d1/d2 where d1 is the smallest
distance and d2 is the second smallest distance.
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Example Clustering

c© Copyright 2004–2009, KR. Coombes, KA. Baggerly, and BM. Broom GS01 0163: ANALYSIS OF MICROARRAY DATA



INTRODUCTION TO MICROARRAYS 40

Example Clustering
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CRLMM

Carvalho et al. developed preprocessing method that
removes the bulk of the batch effect.

This permits the use of HapMap as training data.

Summarize probes similar to RMA.

Transform features into log ratio M and average log intensity
S for both sense and antisense strands.

Use HapMap data (where available) to estimate priors on
genotype regions.

Use genotype calls that achieve at least 99% concordance,
recalculate genotype centers and scales, and recompute
calls and log-likelihood ratios.
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Example on which BRLMM does poorly
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SNP Quality: CRLMM vs Birdseed
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CRLMM Availability

CRLMM is available as a Bioconductor package for R.
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