NEXT GENERATION DNA SEQUENCING: WHY SHOULD WE CARE

SHOUDAN LIANG (KEITH BAGGERLY & BRADLEY BROOM) MICROARRAY ANALYSIS CLASS, NOV 23, 2010

SEQUENCING CAPACITY IS GROWING EXPONENTIALLY

- first human genome sequenced over ten years at \$3 billion.
- 2007, Watson's genome was sequenced in two months by 454 at \$2 million.
- Last year, the cost (list price of reagent) of human genome re-sequencing using Solexa is \$250,000.
- ABI SOLiD claim to be able to re-sequence at \$10,000 this year.

The cost of sequencing DNA has dropped by more than a million folds in the last ten years

CPU Transistor Counts 1971-2008 & Moore's Law

SEQUENCING IS EXPECTED TO FOLLOW MOORE'S-LIKE LAW

- Moore's law: computing power a dollar can buy doubles every 18 months
- rate limiting step in NEXT GEN sequencing is imaging. CCD camera in sequencer will increase in capacity following Moore's law.
- DNA sequencing with semiconductor : merging of two technologies?

Pixels per dollar of Kodak digital cameras

en.wikipedia.org

APPLICATIONS IN GENOME RESEARCH

- a DNA sequence is a bar-code, and therefore an addressing system of a genome
- share similarities with microarray in measuring amount of DNA by genome locations

Steps in Preparing an RNA-Seq Library

- 1. Purify RNA
- 2. Bind polyA fraction (mRNA)
- 3. Fragment RNA (200 bp)

- 4. Convert to cDNA by random priming
- 5. Apply adaptors and sequence
- 6. Analyze millions of 25 bp reads

Copyright 2008

DIGITAL GENE EXPRESSION SOLEXA VS GOLD STANDARD

787 RefSeq human transcripts in brain and UHR

TaqMan is considered a gold standard

Diversity of The Human Genome

ARTICLE

A map of human genome variation from population-scale sequencing

Whole-genome low-coverage:179 from 4 populationsWhole-genome high-coverage:2 Mom-Dad-Child triosExon-targeted sequencing:697 from 7 populations

The 2000 Genomes Project Consortium*

Table 2 | Estimated numbers of potentially functional variants in genes

	Combined	Combined novel	Low coverage		High-coverage trio		Exon capture		
Class	total		Total	Interquartile*	Total	Individual range	Total	Interquartile*	GENCODE extrapolation
Synonymous SNPs	60,157	23,498	55,217	10,572-12,126	21,410	9,193-12,500	5,708	461-532	11,553-13,333
Non-synonymous SNPs	68,300	34,161	61,284	9,966-10,819	19,824	8,299-10,866	7,063	396-441	9,924-11,052
Small in-frame indels	714	383	666	198-205	289	130-178	59	1-3	~25-75
Stop losses	77	40	71	9-11	22	4-14	6	0-0	~0-0
Stop-introducing SNPs	1,057	755	951	88-101	192	67-100	82	2-3	~50-75
Splice-site-disrupting SNPs	517	399	500	41-49	82	28-45	3	1-1	~50
Small frameshift indels	954	551	890	227-242	433	192-280	37	0-1	~0-25
Genes disrupted by large deletions	147	71	143	28-36	82	33-49	ND	ND	ND
Total genes containing LOF variants	2,304	NA	1,795	272-297	483	240-345	77	3-4	~75-100
HGMD 'damaging mutation' SNPs	671	NA	578	57-80	161	48-82	99	2-4	~50-100

NA, not applicable; ND, not determined.

Interquartile range of the number of variants of specified type per individual.

1066 | NATURE | VOL 467 | 28 OCTOBER 2010

{15 million SNPs; I million short indels; 20,000 structural variants were identified from total sequence data}
<u>Amount of diversity observed per individual genome</u>:
250-300 loss-of-function variants
50-100 variants implicated in inherited disorders
~10,000 non-synonymous cSNP differences compared to a published reference genome

TECHNOLOGY LOOKING FOR PROBLEMS

- currently, USA has 600 next-generation sequencers. The rest of the world another 500 or so.
- Number of human genomes to be sequenced by the end of next year is about 30,000.

platform	Feature generation	Cost per mega base	Cost per instrument	most commo n error	Read- length
Roche GS-FLX (454)	Emulsion PCR	\$20	\$500,000	Indel	400 bp
Illumina GA (Solexa)	Bridge PCR	\$2	\$430,000	Subst.	36 bp
ABI SOLID	Emulsion PCR	\$2	\$591,000	Subst.	35 bp
HeliScope	Single molecule	\$1	\$1,350,000	Del	30 bp
Pacific Biosciences	Single molecule	-	-	Del/ Subst.	long
Complete Genomics	Nanoball	\$0.01	NA	Subst.	35 bp

Modified from Shendure & Ji, Nature Biotechnology 26, 1135 - 1145 (2008)

NEXT GEN SEQUENCING: HARDWARE

- Sanger
- 454
- ABI SOLID
- Illumina Solexa
- Complete Genomics
- Pacific Biosciences

ELONGATION AFTER PRIMER

http://web.utk.edu/~khughes/SEQ

ENLONGATION STOPS WHEN DIDEXOY BASE IS ENCOUNTERED

http://web.utk.edu/~khughes/SEQ

PRODUCING A LADDER

THAT CAN BE READ ON GEL

•FRAGMENTS SEPARATE BY SIZE AS THEY MIGRATE THROUGH THE GEL.

•DYES ATTACHED TO THE DIDEOXY TERMINATORS MARK THEIR POSITION IN THE GEL.

http://web.utk.edu/~khughes/SEQ

TRACING OF THE LADDER

http://web.utk.edu/~khughes/SEQ

Nature Biotech. (2008) 26: 1135

TWO METHODS OF SINGLE MOLECULE PCR

Nature Biotech. (2008) 26: 1135

a: emulsion PCR (454 & SOLiD) b: bridge PCR (Solexa)

SEQUENCING BY SYNTHESIS

Schematic representation of the progress of the enzyme reaction in solid-phase pyrosequencing

Pyrosequencing

whole genome amplification

5-100ng DNA

www.454.com

2-5 µg DNA

Anneal sstDNA to an excess of DNA Capture Beads Emulsify beads an PCR reagents in water-in-oil microreactors Clonal amplificatio occurs inside microreactors

Break microreactors enrich for DNApositive beads

GS FLX Data

Flowgram

ABI SOLID

PREPARE LIBRARY OF SINGLE STRANDED DNA

SINGLE MOLECULE PCR

BEADS ON SURFACE

ABI SOLID SEQUENCING

16 DI-NUCLEOTIDES PROBES IN 4 STEPS

ABI SOLID CYCLING

Illumina Solexa

BRIDGE PCR

• 8 lanes per run

- 200 pictures per lane
- 4X36 pictures for 36-mer
- 1/4 million pictures per 3-day run -> 0.5TB of data

NEW HISEQ 2000

- sequence up to 100bp
- 1 billion tags per experiment
- 25Gbase per day
- reagent cost is about 10 times cheaper than the current product

Complete Genomics

CONSTRUCT A CIRCULAR DNA

ROLLING CIRCLE AMP

HIGH DENSITY PACKING

- each DNA nano-ball is 80 bp genomic DNA (plus 4 adaptors) repeated 200 times.
- reads are equivalent to two 35-bp on paired ends of 500bp DNA.
- rolling circle amplification replaces emulsion or bridge PCR
- 1"X3" silicon slide holds one billion DNA nano-balls

- reagent cost is 1/1000 of Solexa
- demonstrated 8.8 Gb per machine run per day.
- a completed genome sequence on company's web site
- June 2009, launch of commercial run: 200Gb per machine run lasting 8 days.
- data center: 60,000 processors and 30 petabytes storage.

- according to Dr Drmanac, CSO of Complete Genomics, Inc
- next generation of machine will have
 - \$10 per genome reagent cost
 - \$20 per genome of instrument cost

Pacific Biosciences

Unlike Sanger sequencing, which average over many molecules, in next gen sequencing PCR errors do not average away

Application: 3D genome

Application: tumorigenesis

Geographic mapping of metastatic clones within the primary carcinoma and proposed clonal evolution of Pa08.

S Yachida *et al. Nature* **467**, 1114-1117 (2010) doi:10.1038/ nature09515 happy thanksgiving