Pacific Biosciences

Unlike Sanger sequencing, which average over many molecules, in nextGen sequencing PCR errors do not average away

Application: tumorigenesis

Geographic mapping of metastatic clones within the primary carcinoma and proposed clonal evolution of Pa08.

S Yachida *et al. Nature* **467**, 1114-1117 (2010) doi:10.1038/ nature09515

Application: 3D genome

3D Genome?

3D Genome

Nature 465 (2010) 363

BD Genome

Nature 465 (2010) 363

ILLUMINA PIPELINE

Illumina eland: 2 mismatches MAQ: similar to eland bowtie, BWA: very fast

Illumina Firecrest makes

mistakes: optical ghost.

Illumina Bustard

50% --70%

40% --80%

IMAGE PROCESSING

4 by 36 matrices for each colony: intensity of four nucleotides reading for each position

BASE-CALLING

error rate depends on sequencing position

Wang & Sandberg et al, Nature 2008

- Generally allows 2 mismatches to the reference genome.
- complexity must be linear in N, size of the genome
 - −N ~ 10⁹
 - -CPU clock is ns.
- How to find exact match without mismatch?
 –sorting all 36mers in reference genome.
 - -search a sorted list in log(N) steps.

- Method I, sorted list of genomic oligomers or hash table
 - -Lam et al, Bioinformatics 24 2008, 791.
 - -divide 36 bp into six sections
 - matching 15 times (6*5/2)
 - ELAND (Illumina)
 - MAQ (Li et al 2008 Genome Res., 18, 1851– 1858)

- Method II, Burrows-Wheeler transformation
 - Burrows, M. and Wheeler, D. J. (1994) Technical report 124, Digital Equipment Corporation, Palo Alto CA
 - –Bowtie (Langmead, B. et al. (2009) Genome Biol, 10:R25)
 - -BWA (Li & Durbin Bioinformatics 25 2009 1754)

- Other methods
 - –SeqMap (Jiang & Wong, Bioinformatics 24 2008, 2395)
 - -SOAP (Li et al. Bioinformatics 2008, 24(5):713)
 - -BLAT (Kent, UCSC genome browser)
 - –Mosaik-Aligner (<u>http://bioinformatics.bc.edu/</u> <u>marthlab/Mosaik</u>) from Boston College

Illumina Genome Analyzer Output

- three types of files
 - -s_7_sequence.txt
 - HWUSI-EAS230-R_0023:7:1:1406:20572#0/2:CCGCGAGAGCCATCGCGCGGCTCCCGGTCCCTGTTCC:TYdTdbLLTY\Z\ \MXZUZ]`^LK`bMM_\Y`^K`B

-s_7_export.txt

- HWUSI-EAS230-R 0023 7 1 1406 20572 0 2 CCGCGAGAGCCATCGCGCGGCTCCGGTCCCTGTTCC TYdTdbLLTY\Z\\MXZUZ]`^LK`bMM_\Y`^K`B NM Y
- HWUSI-EAS230-R 0023 7 1 1245 18361 0 2 CTCTTCCTCAACACAGAGGGGGGTTAACAAGCCATGC d \ddddTddacTbdcTT]Y`Z[]L``cTYbd\cYcb c6.fa 110171719 F 36 118 236 69 R Y

-s_7_sorted.txt

- HWUSI-EAS230-R 0023 7 1 1245 18361 2 CTCTTCCTCAACACAGAGGGGGGTTAACAAGCCATGC d 0 \ddddTddacTbdcTT]Y`Z[]L``cTYbd\cYcb c6.fa 110171719 F 36 69 R 118 236
- Solexa manual: <u>http://watson.nci.nih.gov/</u> <u>solexa/</u>

Illumina Data

- UCSC genome browser ENCODE –<u>http://genome.ucsc.edu/ENCODE/</u>
- GEO short read archive –<u>http://www.ncbi.nlm.nih.gov/geo/</u>
- NIH epigenomics roadmap
 - –<u>http://www.ncbi.nlm.nih.gov/geo/roadmap/</u> epigenomics/

TYPES OF BINDERS

- 1. point-like binding such as transcription factors, or CTCF.
- 2. extended binding region: histone modifications. H3K27 has larger domain than H3K4.
- 3. PolII: point-like in promoter, and extended in gene body.

CONTROL EXPERIMENT

Rozowsky et al. Nat Biotechnol 2009, 27:66.

CALIBRATING BACKGROUND

What is the likelihood of finding a window with large tag count?

Extrapolate!

Poisson statistics Negative Binomial

CONTROL EXPERIMENT

Rozowsky et al. Nat Biotechnol 2009, 27:66.

Program	Special feature	How to shift tag	Peaks ranked by	artifact filtering strand/duplicate
MACS	shift tags	high quality	poisson p-value	No/Yes
SICER	histone domain	input	poisson q-value	No/Yes
cisGenome	to background	high quality	negative binomial	Yes/Yes
QuEST	shape kernel	corelation	fold of enrichme	Yes/Yes
PeakSeq	mappability	tag extension	Poisson q-value	No/No
spp	find summit	correlation	MC p- value	Yes/No
GLITR	FDR from background	tag extension	peak height	No/No

Genome Browser is your friend

- UCSC Genome Browser
- http://genome.ucsc.edu
- Tutorial: Zweig et al. Genomics 92 (2008) 75– 84
- custom track
 - -bed file: block data
 - -wiggle file: continuous data