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Lecture 9: Differential Expression

• One Last Caution on Normalization

• Student’s t-test, and Simulations

• Family-wise error rate

• Permutation tests

• Is FWER too conservative?

• Significance Analysis of Microarrays (SAM)

• Beta-uniform mixture model

• Empirical Bayes
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Project Normal: A Cautionary Tale

Pritchard, Hsu, Delrow and Nelson

Project Normal: Defining Normal Variance in Mouse Gene Expression

PNAS 98 (2001), 13266-13271.

Data set used for the third annual Critical Analysis of Microarray

Data (CAMDA 2002)
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Pritchard et al.’s Initial Goals

The goal of many microarray studies is to identify genes that are

“differentially expressed”.

Relative to what?

Differences larger in scale than those that would be encountered due

to “normal” or technical variation.

Try to assess the fraction of genes exhibiting a large mouse-to-mouse

heterogeneity in the absence of structure.
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Pritchard et al.’s Experimental Design

Eighteen Samples

• Six C57BL6 male mice

• Three organs: kidney, liver, testis

Reference Material

• Pool all eighteen mouse organs

Replicate microarray experiments using two-color fluorescence with

common reference and dye swaps

• Four experiments per mouse organ, 2 each dye
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Pritchard et al.’s Analysis

Print-tip specific intensity dependent loess normalization

Perform F-tests on log(Exp/Ref) for each gene to see if

mouse-to-mouse variance exceeds the array-to-array variance
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The Data Supplied

Images

One quantification file each for kidney, liver and testis.

CDNA ID, Cluster ID, Title,

Block, Column, Row

F635 Median M1K3_1, B635 Median M1K3_1

F532 Median M1K3_1, B532 Median M1K3_1

Mouse 1, Kidney Sample in Cy3 channel, first replicate.
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Why We Got Involved

All in all, the analysis described looks pretty good. F-tests on log

ratios seem reasonable, and the preprocessing steps they used are

fairly standard. Furthermore, the images looked fairly clean.

“Fairly standard” 6= correct

For this data, we think that loess normalization is incorrect.
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What Loess Looks Like for 1 Array
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Why Loess Normalization?

Most normalization methods assume:

• Distributions of intensities are the same in the two channels

• Most genes do not change expression

• The number of overexpressed genes is about the same as the

number of underexpressed genes

Loess normalization tries to force the distributions in the two

channels to match, believing that differences are attributable to

technology.

© Copyright 2004–2010, KR Coombes, KA Baggerly and BM Broom GS01 0163: Analysis of Microarray Data



Differential Expression 10

Why We Think It’s Wrong
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Simulated Data
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What’s In the Data? Checking Dye Swaps
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Interpretation

• Distributions of intensities are different in the two channels

• Difference is NOT caused by arrays, dyes, or technology

• Difference is inherent in the choice of reference material
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Class Comparison

Perhaps the most common use of microarrays is to determine which

genes are differentially expressed between prespecified groups of

samples. We refer to this as the class comparison problem. We

begin with the simplest case:

• Given microarray experiments on

• NA samples of type A

• NB samples of type B

• Decide which of the G genes on the microarray are differentially

expressed between the two groups.

© Copyright 2004–2010, KR Coombes, KA Baggerly and BM Broom GS01 0163: Analysis of Microarray Data



Differential Expression 15

Student’s t-test

In many cases, we analyze microarrays “one gene at a time”. That is,

we first analyze the same problem for one gene, and then figure out

how to adapt that method to thousands of genes.

The one-gene version of the class comparison problem with two

classes is Student’s t-test. We first estimate the mean and standard

deviation in both classes:

x̄A =
1

NA

NA∑
i=1

xi, s2A =
1

NA − 1

NA∑
i=1

(xi − x̄)2.
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Weighted difference in means

Next, we “pool” the estimated group standard deviations:

s2P =
(NA − 1)s2A + (NB − 1)s2B

NA +NB − 2
.

The two-sample t-statistic is the difference in means, weighted by the

pooled standard deviation and the number of samples:

t =
x̄B − x̄A

sP
√

1/NA + 1/NB

.

Question: Why not just use the difference in means?
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T-statistics

Three ways to get a larger t-statistic:

• Bigger difference in means

• Smaller standard deviation

• More samples
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Microarray aside: which scale is best?

Before answering the question, we offer a slight reinterpretation.

Most (but not all) analysts believe that microarray data should be

transformed by computing logarithms before testing for differential

expression. The key mathematical fact supporting this belief is that

the logarithm turns multiplication into addition:

log(xy) = log(x) + log(y).

In particular

log(2x) = log(x) + log(2), log(x/2) = log(x)− log(2).

Differences on the log scale can be interpreted as “fold change” on

the original scale of the data. Increases and decreases by the same

fold change are treated equally on the log scale.
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Something New: p-values

Null hypothesis: The mean difference between the two groups is zero.

Two-sided alternative hypothesis: The mean difference is non-zero.

P-value = probability of seeing a t-statistic this extreme under the

null hypothesis = area in both tails of the distribution.

Interpretation: if you repeat the experiment many times (with the

same numbers of samples), the p-value represents the proportion of

times you expect to see a t-statistic this large.

BUT: Computing a t-statistic for each gene on a microarray is like

performing the same experiment many times.
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Simulating nothing

We simulated a microarray data set with no differences:

> n.genes <- 10000

> n.samples <- 20

> an <- n.samples/2

> bn <- n.samples/2

> type <- factor(rep(c("A", "B"), times = c(an, bn)))

> data <- matrix(rnorm(n.genes * n.samples), nrow = n.genes)

> am <- apply(data[, type == "A"], 1, mean)

> bm <- apply(data[, type == "B"], 1, mean)

> av <- apply(data[, type == "A"], 1, var)

> bv <- apply(data[, type == "B"], 1, var)

> sp2 <- ((an - 1) * av + (bn - 1) * bv)/(an + bn -

+ 2)
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The t Distribution

> t.stat <- (bm - am)/sqrt(sp2)/sqrt(1/an + 1/bn)

> hist(t.stat, breaks = 100, xlab = "")

Histogram of t.stat

F
re

qu
en

cy

−4 −2 0 2 4

0
10

0
20

0
30

0
40

0

© Copyright 2004–2010, KR Coombes, KA Baggerly and BM Broom GS01 0163: Analysis of Microarray Data



Differential Expression 22

P-values are Uniformly Distributed

> p.val <- sapply(t.stat, function(tv, df) {

+ 2 * (1 - pt(abs(tv), df))

+ }, an + bn - 2)

> hist(p.val, breaks = 100, xlab = "")

Histogram of p.val
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How “Significant” is Nothing?

Are we finding anything other than what we expect?

> sum(p.val < 0.05) # observed

[1] 519

> 0.05 * n.genes # expected

[1] 500
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Estimating Nothing

If there are no real differences, and if we can treat different genes as

though they are “replicates” of the same experiment, then

1. Number of genes with p < α is approximately αN .

2. The distribution of p-values is uniform.
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Statistical Error Types

Statisticians (on average) are obsessed with errors. They also use

circumlocutions that make it difficult for non-statisticians to

understand them. E.g., “rejecting the null hypothesis” means “calling

a gene differentially expressed”.

Test Result Truly Different Truly Unchanged

Positive True Positive (TP) False Positive (FP)

Type I Error

Negative False Negative (FN) True Negative (TN)

Type II Error

P-value = Prob(Type I Error)

To control Type II Errors (FN), you have to increase the sample size

to ensure enough power to detect the true differences.
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The Family-Wise Error Rate (FWER)

FWER = probability of getting ≥ 1 FP when performing many

statistical tests = probability of making ≥ 1 mistake.

Bonferroni adjustment: To achieve FWER ≤ α when looking at G

genes, use p ≤ α/G on a per-gene basis.

> bonferroni <- 0.05/n.genes

> bonferroni

[1] 5e-06

> sum(p.val < bonferroni)

[1] 0
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What Happens with Real Data?

Reference: Lapointe et al. Gene expression profiling identifies

clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci

USA. 2004; 101: 811–816.

Two-color arrays processed with local background subtraction, loess

normalization, and taking log ratios to a reference channel.

• 41 samples of apparently normal prostate

• 62 samples of prostate cancer

• 9 samples of lymph node metastases from prostate cancer

We randomly selected ten samples of normal prostate and ten

samples of prostate cancer, and performed two-sample t-tests.
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Real p-values

There seems to be an overabundance of small p-values, causing the

distribution to differ considerably from uniform.
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Counting Small

> n.genes <- nrow(data)

> n.genes

[1] 42129

> sum(p.val < 0.05) # observed

[1] 6316 (2931 if p < 0.01)

> 0.05 * n.genes # expected

[1] 2106.45 (421.29 if p < 0.01)

> bonferroni <- 0.05/n.genes

> bonferroni

[1] 1.186831e-06

> sum(p.val < bonferroni)

[1] 42
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Simulating Something

We also simulated two data sets with differences:

1. Data Set I

• 10 arrays per group, 2000 genes per array

• Gene expressions in each group are independent, N(µ, 1).

• In group A, take all µA = 0.

• 50 genes are different, with |µA − µB| ∼ 5 ∗Beta(2, 8).

2. Data Set II

• 10 arrays per group, 10, 000 genes per array

• Mean expression µA ∼ Exp(1/20).

• 100 genes are different, with µA/µB ∼ 1 + 9 ∗Beta(3, 7).
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Bonferroni Correction: Results

• Data Set I (normal model)

• Truth: 50 genes differ out of 2000

• With α = 0.05, makes 21 positive calls, 21 correct.

• Data Set II (exponential + noise)

• Truth: 100 genes differ out of 10, 000

• With α = 0.05, makes 25 positive calls, 25 correct.
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Beginning to assess the model

A key assumption of the Bonferroni approach is that a uniform

distribution adequately describes the p-values when there are no

differentially expressed genes present.

We can test how good this model is by performing a permutation

test. In this case, we simply scramble the labels on the samples.

In the prostate example, we have ten normal and ten cancer samples.

We choose ten samples at random to call“normal”, and call the other

ten “cancer”, and we repeat the analysis with the two-sample t-test.
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P-values with Scrambled Sample Labels

Nearly uniform, with a slight bulge near p = 0.01. This might be

attributable to an imbalance of “truth” in the permuted groups.
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Scrambled Data is Insignificant

> sum(p.val < 0.05) # observed

[1] 2257

> 0.05 * n.genes # expected

[1] 2106.45

> sum(p.val < 0.01) # observed

[1] 406

> 0.01 * n.genes # expected

[1] 421.29

> sum(p.val < bonferroni)

[1] 0
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Should We Believe the p-values?

There is another potential difficulty with using the Bonferroni

approach: in order to get a significant gene, we need extremely small

p-values. That means we have to very accurately estimate the tails

of the distribution, which is a fairly difficult thing to do unless one of

two fairly unlikely things happens:

1. The number of samples is extremely large, or

2. The distribution of expression values is almost perfectly described

by a normal distribution.

We can use permutations to get around the second problem, but that

only makes the first problem worse.
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Dudoit’s Permutation p-values

Reference: Dudoit et al. Statistical methods for identifying

differentially expressed genes in replicated cDNA microarray

experiments. Statistica Sinica, 2004; 12: 111-139.

• Perform t-test for each gene g. Sort the absolute t-statistics, |tg|.

• Repeat many times:

• Randomly permute sample labels.

• Compute new t-statistics

• Adjust p-values based on empirical joint distribution of t-statistics

to control FWER.
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Adjusted p-values, Data Set I
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Adjusted p-values, Data Set II
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Dudoit’s Method: Results

• Data Set I (normal model)

• Truth: 50 genes differ, out of 2000.

• With α = 0.05, makes 21 positive calls, 21 correct.

• Data Set II (exponential + noise)

• Truth: 100 genes differ, out of 10, 000

• With α = 0.05, makes 21 positive calls, 21 correct.
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Is FWER too conservative?

1. In the prostate data set, Bonferroni with FWER ≤ 5% flagged

42 genes.

2. With an uncorrected p ≤ 1%, the model underlying the Bonferroni

correction predicts only 421 genes, but we actually observe 2931.

3. With an uncorrected p ≤ 5%, the model underlying the Bonferroni

correction predicts only 2106 genes, but we actually observe 6316.

Are there only 42 differentially expressed genes among the 42129

spots on this array, or are there 2510 = 2931− 421? Or maybe

even 4210 = 6316− 2106?
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Opportunity Cost

The Bonferroni correction only considers Type I Errors. Microarray

experiments, however, are often used for discovery. Findings are

usually confirmed by performing additional experiments (typically,

real-time PCR). In some cases, the “opportunity cost” of missing out

on a discovery (by making a Type II Error) is greater than the

“validation cost” of finding some false positives (Type I Errors) in

your list of genes.

Like anything else, there are trade-offs. By choosing a smaller

significance cutoff for the p-values, you get fewer false positives but

more false negatives. By choosing a larger cutoff, you get more false

positives and fewer false negatives.
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The False Discovery Rate (FDR)

FDR = FP/(TP + FP ) = fraction of false positives among all

genes called differentially expressed by the test. Here is a crude way

to estimate FDR: Assume the uniform p-value model holds under the

null. Then the expected number of false discoveries at a given cutoff

is pG. If the total number of discoveries is V , then we can estimate

FDR = pG/V . In the prostate example, this gives

• When p = 0.05, FDR = 2106/6316 = 0.3334.

• When p = 0.01, FDR = 421/2931 = 0.1436.

This estimate isn’t very good. It overestimates the number of errors

by not allowing for true discoveries.
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Significance Analysis of Microarrays (SAM)

Reference: Tusher et al. Significance analysis of microarrays applied

to the ionizing radiation response. PNAS, 2001; 98: 5116–5121.

• Compute modified t-statistics (increase σ to minimize coefficient

of variation across the array).

• Recompute t-statistics based on balanced permutations (each

group equally represented) of the sample labels.

• Decide on significance cutoff based on quantile-quantile plot of

observed versus expected t-statistics.

• Estimate FDR from the permutations.
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SAM, Data Set I
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SAM, Data Set II
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SAM: Results

• Data Set I (normal model)

• Truth: 50 genes differ, out of 2000.

• With FDR = 0.10, makes 32 positive calls, 30 correct.

• Data Set II (exponential + noise)

• Truth: 100 genes differ, out of 10, 000

• With FDR = 0.10, makes 41 positive calls, 37 correct.

Detects more true positives in simulated data than Bonferroni or

Dudoit, at some cost in false positives. Like Dudoit’s method, it is

computationally intensive.
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A Beta-Uniform Mixture Model (BUM)

Reference: Pounds and Morris. Estimating the occurrence of false

positives and false negatives in microarray studies by approximating

and partitioning the empirical distribution of p-values.

Bioinformatics, 2003; 19: 1236–1242.
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The BUM Theory

Idea: Model the p-values as a mixture of a uniform distribution and a

beta distribution. Estimate mixture parameters. Obtain estimates of

TP, FP, FN, TN as a function of significance cutoff.

© Copyright 2004–2010, KR Coombes, KA Baggerly and BM Broom GS01 0163: Analysis of Microarray Data



Differential Expression 49

BUM, Data Set I
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BUM, Data Set II
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BUM: Results

• Data Set I (normal model)

• Truth: 50 genes differ, out of 2000.

• With FDR = 0.10, makes 33 positive calls, 31 correct.

• Estimates that 2.8% of genes are different (truth = 2.5%)

• Data Set II (exponential + noise)

• Truth: 100 genes differ, out of 10, 000

• With FDR = 0.10, makes 40 positive calls, 37 correct.

• Estimates that 0.7% of genes are different (truth = 1.0%)

Results equivalent to SAM, with much less computation.
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BUM Results on Prostate Data

We have already seen the histogram, and the fit of the beta-uniform

mixture.

• With FDR < 0.01, calls 427 genes differentially expressed.

• With FDR < 0.05, calls 1513 genes differentially expressed.

• With FDR < 0.10, calls 2727 genes differentially expressed.

Overall, BUM estimates that 26% of the genes are differentially

expressed at some level. (That’s more than 10, 000 genes!)
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Empirical Bayes

There are other ways to exploit the fact that we have thousands of

tests in order to improve our estimates of what’s going on. Here, we

encounter a synthesis of two views of statistics: frequentist and

Bayesian.

Reference: Efron and Tibshirani. Empirical Bayes methods and false

discovery rates for microarrays. Genetic Epidemiology, 2002; 23:

70–86.
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Basic Idea

Assume that there are two classes of genes, Different and Not

Different. We assume prior probabilities

• p0 = Prob(Not Different)

• p1 = 1− p0 = Prob(Different)

and density functions

• f0(y), known, if Not Different (Null)

• f1(y), unknown, if Different
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Mixtures

The overall probability density function is a mixture

f(y) = p0f0(y) + p1f1(y).

Bayes’ Theorem: P (H|D) = P (D|H)P (H)/P (D)

Applying Bayes’ Theorem gives posterior estimates:

p0(y) ≡ Prob(Not Diff|Y = y) = p0f0(y)/f(y)

and

p1(y) ≡ Prob(Diff|Y = y) = 1− p0f0(y)/f(y)

We can use the observed data to estimate the overall density

function by f̂(y) (typically by log-transforming the observed function

and fitting a curve.)
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Empirical Bayes

The “empirical” nature of this Bayesian idea is that we can adjust the

“prior”p0 after looking at the data, and thus obtain some reasonable

values for it. First, here is how well we fit the distribution (mentally

swap the labels, since they’re wrong):
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Plot of Posterior Probability of Difference

This graph assumes p0 = 1, so no genes are different. The posterior

probability of difference goes negative! This results from the

“empirical” nature of the estimate without imposing a full model. We

can, however, adjust p0 to prevent negative probabilities.
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Plot of Posterior Probability of Difference

This shows posterior probabilities with p0 = 0.7, 0.8, 0.9, 1.0.

Somewhere between p0 = 0.7 and p0 = 0.8, all the posterior

probabilities become positive.
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Plot of Posterior Probability of Difference

This plot uses p0 = 0.75, which is essentially the largest value we

can use for p0 and ensure that all the posterior probabilities are

positive. The horizontal line indicates a posterior probability of 90%

that a gene is differentially expressed.
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How does this work in R?

We have implemented this idea in an R package:

http://bioinformatics.mdanderson.org/software.html
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The OOMPA home page
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The ClassComparison package
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