
Using the Duke Software

Kevin R. Coombes, Jing Wang, and Keith A. Baggerly

26 March 2007

1 Problem Definition

The results that we have reported thus far have been derived from analyses that we can perform
directly in R. The software that they used (posted on their website) is written in Matlab. Here, we
explore various ways in which their software can be invoked using a series of batch function calls to
Matlab. To run this Rnw file, you will need to have Matlab installed on your computer. You will
also need to edit the file, as most of the Matlab-specific blocks currently have eval=FALSE set, and
there are some system specific invocations.

> options(width = 70)

2 Training Data, Starting With 5-FU

2.1 Producing Files for the Software (Training)

We begin by trying to use their software to analyze the cell lines that they used for 5-FU. Their
software requires an input data table of microarray quantifications, with nprobesets by nsamples data
entries.

If this table is in an Excel file, there can be a text column giving the probeset id; the Duke
script run_binreg.m uses the numerical output from the Matlab xlsread function, which discards
leading columns of text. Alternatively, this table can be supplied as a comma-separated (csv)
or tab-separated (tsv) text file. However, if the file suffix is anything other than xls, the Matlab
function load is used. With load, there should be no text, so in particular a column of probeset ids
should not be reported. In addition to the quantifications, the first row should indicate the sample
classification: 0 (resistant), 1 (sensitive), or 2 (test set). We note that the mapping of numbers (0,1)
to states (resistant,sensitive) was chosen arbitrarily here; there is nothing in the documentation that
requires a specific direction. The contents of the classification row are discarded after the assignment
is made.

For the training data, we can assemble this table by extracting the appropriate columns from
the chemoPredictors object and writing them out in a csv file.

> library(hgu95av2)

> load(file.path("RDataObjects", "chemoPredictors.Rda"))

1

SR9 2

> load(file.path("RDataObjects", "changData.Rda"))

> load(file.path("RDataObjects", "features.Rda"))

> temp5fu <- predictors[, predictorsInfo$drugName == "5-FU"]

> tempStatus <- predictorsInfo$resp[predictorsInfo$drug ==

+ "5-FU"]

> tempValue <- rep(0, length(tempStatus))

> tempValue[tempStatus == "Sensitive"] <- 1

> tempTable <- rbind(tempValue, temp5fu)

> write.table(tempTable, file = file.path("MatlabFiles",

+ "FUTraining.csv"), row.names = FALSE, col.names = FALSE,

+ sep = ",")

> write.table(rownames(temp5fu), file = file.path("MatlabFiles",

+ "GeneIDsGood.csv"), row.names = FALSE, col.names = FALSE,

+ sep = ",")

> write.table(c("probeset id", rownames(temp5fu)), file = file.path("MatlabFiles",

+ "GeneIDsBad.csv"), row.names = FALSE, col.names = FALSE,

+ sep = ",")

> rm(temp5fu, tempStatus, tempValue, tempTable)

In general, however, it is dangerous to have a quantification file sitting off to the side without
annotation, so we are going to export a few other files as well.

> filesForDuke <- function(outputPrefix, outputPath, drugName,

+ fullData, fullInfo) {

+ tempData <- fullData[, fullInfo$drugName == drugName]

+ tempStatus <- fullInfo$resp[fullInfo$drug == drugName]

+ tempValue <- rep(0, length(tempStatus))

+ tempValue[tempStatus == "Sensitive"] <- 1

+ tempQuant <- rbind(tempValue, tempData)

+ write.table(tempQuant, file = file.path(outputPath,

+ paste(outputPrefix, "Quant.csv", sep = "")),

+ row.names = FALSE, col.names = FALSE, sep = ",")

+ write.table(rownames(tempData), file = file.path(outputPath,

+ paste(outputPrefix, "GeneIDs.csv", sep = "")),

+ row.names = FALSE, col.names = FALSE, sep = ",")

+ write.table(fullInfo[fullInfo$drugName == drugName,

+], file = file.path(outputPath, paste(outputPrefix,

+ "SampleInfo.csv", sep = "")), row.names = TRUE,

+ col.names = TRUE, sep = ",")

+ }

For the training data, we then simply invoke the function.

SR9 3

> filesForDuke(outputPrefix = "FiveFUTraining", outputPath = "MatlabFiles",

+ drugName = "5-FU", fullData = predictors, fullInfo = predictorsInfo)

2.2 Parameter Settings and Outputs

Ok, now that we have supplied a set of raw data files, we need to clarify (a) what else we need to
provide to run the Duke software in batch mode, and (b) what files we want to obtain as output.

Typically, you run the Duke software by opening Matlab with the Duke software directory
somewhere in your path, and invoking binreg. This will pop up a GUI asking you to supply 10
modeling parameters. These parameters are:

1. excel: the location of the quantification file, either as an absolute path or relative to the
current directory. Graphical browsing is an option. Despite the name, the software will work
if a text file of all numbers and separators is supplied. Note that applying the normalization
option (discussed below) will log-transform the data, so they should not be log-transformed
before this step. Similarly, when normalization is used values below 1 will be thresholded (set
to 1), so centering the data beforehand will also lead to problems.

2. descFile: The location of a Matlab .mat file containing a matrix of characters; each row of the
matrix should contain the gene name (or probeset id) for the corresponding row in the excel
file. Note that there should not be a row corresponding to the top row in the quantification
file that gives the sample classifications. If there is such a row, all of the reported probesets
will be off by one in lexicographical order from the one desired. Given the lists of probeset
ids that we export, we can make use of one of their functions (txt2mat2) to convert this list
to the appropriate .mat file.

3. genes: The number of genes to select from the training set. This is arbitrary, and is not linked
to any particular inherent significance criteria (such as p-value or FDR). The genes chosen
have the most extreme 2-sample pooled variance t-test values contrasting the two groups in
the training set (group 0 and group 1). This selection ignores any test set data.

4. metagenes: The number of principal components (metagenes) used to summarize the ex-
pression matrix for the selected genes. The weightings for these vectors give the metagene
scores for a particular sample; these scores will be used in a probit model for classifying the
samples. The metagenes are found using a singular value decomposition (SVD) applied to the
chosen expression submatrix; the values for each row (gene) are centered and scaled before
this decomposition is performed. We have typically found 1 or 3 to be the numbers required
for a good fit. Slight overestimates should not hurt, so using, say, 5, should be fine.

In one version of this code, the SVD uses data from all of the samples provided, both training
and test. A newer “experimental” version performs the SVD using only the training data. We
will revisit this issue later.

5. burnin: The number of iterations to allow for the Markov chain Monte Carlo to reach the
target distribution for sampling.

SR9 4

6. iteration: The number of iterations to record from the Markov chain Monte Carlo.

7. skips: The number of iterations to ignore between kept iterations of the Monte Carlo, so that
the kept values will be roughly independent.

8. CI: In forming a central credible interval, this value corresponds to α/2, the proportion to
exclude at each end.

9. crossvalidation: A logical value indicating whether leave-one out cross-validation (LOOCV)
should be used in predicting the status of a given training sample. A value of 1 indicates that
cross-validation should be used, 0 that it should not. This value of this parameter is set using
a checkbox in the GUI.

10. normalization: A logical value indicating whether the samples should be log-transformed
and quantile normalized before further processing is applied. If yes, the data matrix X is
first thresholded, X(X < 1) = 1, then log2 transformed, X = log2(X), and finally quantile
normalized X = normalise(X). As with crossvalidation, 1 is yes, 0 is no, and the value is
set using a checkbox in the GUI.

The parameter values are stored in a Matlab structure named UserOptions, and when the
program is run the current version of UserOptions is saved in the Matlab file preferences.mat.
Since we would like to call the processing functions in batch mode, we must specify these values in
a file rather than using the GUI.

When the binreg function is run (with both crossvalidation and normalization set to 1), it
produces a series of outputs. Specifically, it produces

1. Figure 1: A dotplot of the samples in “metagene” (PC) space. The two metagenes with the
largest absolute weights (for separating groups 0 and 1) are used. Group 0 is in blue, group
1 is in red. This plot shows training samples only.

2. Figure 2: A two-panel plot showing (a) the overall weights assigned to the individual meta-
genes, and (b) the “expression weights” assigned to the individual genes used. Note that the
weights assigned to the metagenes do not correspond to the singular values in an SVD, but
rather to the size of the coefficient assigned to that PC by the predictive probit model. The
gene scores are similarly weighted combinations of the scores from each of the PCs, with the
weights given by the scores in (a).

3. Figure 3: A plot of the fitted classification probabilities and outcomes for the training set.
For each sample, the “metagene score” is plotted on the x-axis, and a credible interval for the
probability the sample is in group 1 on the y-axis. No cross-validation is employed here.

4. Figure 4: A plot of the fitted classification probabilities and outcomes for the test set. This
figure is only produced if there are test cases. For each sample, the“metagene score” is plotted
on the x-axis, and a credible interval for the probability the sample is in group 1 on the y-axis.
No cross-validation is employed here.

SR9 5

5. Figure 5: A plot of the LOOCV fitted classification probabilities and outcomes for for the
samples in the training set.

6. Figure 11: A heatmap showing the values of the selected genes in the expression submatrix
used in the SVD. Expression values for each row (gene) are centered and scaled before plotting.
If normalization was invoked, the data will also have been log-transformed. The genes are
ordered according to the weights they receive from the first principal component only. Samples
are largely ordered as they were in the quantification matrix supplied, save that all samples
in group 0 are at the left and all samples in group 1 are at the right.

7. imagegenelist.txt: A table with two columns. The first column gives the position of the
gene in the initially reported top gene list, and the second column gives the gene name. The
order of the genes should match that in the heatmap in Figure 11.

8. topgenecoeffs.txt: a table with two columns. The first column is the gene coefficient (the
weighted combination of PC scores), and the second column is the gene id. Unfortunately,
the order of the coefficients and gene ids does not match. The function run_binreg.m sorts
one set of values but not the other. To get them to match properly, the numerical values in
the first column should be sorted, with the most positive value at the top, while leaving the
column of probeset ids untouched.

9. trainingcases.txt: a file with 5 columns of numerical data, with rows corresponding to
samples in the training set. The columns are

(a) Sample Index.

(b) The central probability estimate for the sample.

(c) The lower bound for the CI.

(d) The upper bound for the CI.

(e) The metagene score for the sample.

This file gives the numerical values used in Figure 3, but not the group membership. We
should have this information elsewhere, however.

10. validationcases.txt: a file with 5 columns of numerical data, with rows corresponding to
samples in the validation (test) set. This file is only produced if there are test cases. The
columns are

(a) Sample Index.

(b) The central probability estimate for the sample.

(c) The lower bound for the CI.

(d) The upper bound for the CI.

(e) The metagene score for the sample.

SR9 6

This file gives the numerical values used in Figure 4, but not the group membership. We
should have this information elsewhere, however.

11. normalisedX.txt: the log-transformed and normalised data.

The numbering of the figures given above is taken from the Duke software output. The gap between
“Figure 5” and “Figure 11” is not a mistake.

2.3 Invoking the Duke Software from R (Training)

Invoking the Duke software from R requires the following steps:

1. Write a Matlab m-file to perform the analysis.

2. Write a shell script to invoke Matlab and run the m-file.

3. Invoke the shell script.

Unfortunately, some of these steps are likely to be system dependent. We have not tested this
thoroughly.

For the case where we are just working with training data, we can wrap most of this in a
function.

> mFilesForDuke <- function(outputPrefix, outputPath, drugName,

+ userOptions, matlabLocation) {

+ pfx <- file.path(outputPath, outputPrefix)

+ mFileName <- paste(pfx, ".m", sep = "")

+ scriptName <- paste(pfx, ".sh", sep = "")

+ dukeLocn <- file.path("..", "PublicData", "DukeWebSite",

+ "Pittman_zip")

+ mf <- file(mFileName, "w")

+ cat("addpath('", dukeLocn, "');\n\n", file = mf,

+ sep = "")

+ cat("txt2mat2('", pfx, "GeneIDs.csv');\n", file = mf,

+ sep = "")

+ cat("movefile('descriptions.mat','", pfx, "Descriptions.mat');\n\n",

+ file = mf, sep = "")

+ for (i1 in 1:length(userOptions)) {

+ cat("UserOptions.", names(userOptions)[i1], "=",

+ userOptions[[i1]], ";\n", file = mf, sep = "")

+ }

+ cat("\n", file = mf)

+ cat("silent = 0;\n", file = mf)

+ cat("run_binreg(UserOptions, silent);\n\n", file = mf)

+ figNames <- c("PCA", "MetaWts", "ProbVsWt", "ProbVsWtTest",

SR9 7

+ "CrossVal", "Heatmap")

+ figPfx <- c("'-dpng'", "'-dpdf'", "'-depsc'")

+ figSfx <- c(".png", ".pdf", ".eps")

+ figPth <- file.path(outputPath, "Figures", outputPrefix)

+ for (i1 in c(1, 2, 3, 5)) {

+ cat("figure(", i1, ");\n", file = mf, sep = "")

+ cat("set(gcf,'Color','w');\n", file = mf)

+ for (i2 in 1:3) {

+ cat("print(", figPfx[i2], ",'", figPth, figNames[i1],

+ figSfx[i2], "');\n", file = mf, sep = "")

+ }

+ cat("\n", file = mf)

+ }

+ cat("figure(11);\n", file = mf, sep = "")

+ cat("set(gcf,'Color','w');\n", file = mf)

+ cat("title('", drugName, ", ", userOptions$genes,

+ " Genes');\n", file = mf, sep = "")

+ cat("xlabel('Samples');\n", file = mf)

+ cat("ylabel('Genes');\n", file = mf)

+ for (i1 in 1:3) {

+ cat("print(", figPfx[i1], ",'", figPth, figNames[length(figNames)],

+ figSfx[i1], "');\n", file = mf, sep = "")

+ }

+ cat("\n", file = mf)

+ cat("silent = 1;\n", file = mf)

+ cat("run_binreg(UserOptions, silent);\n\n", file = mf)

+ cat("load('plotdata.mat');\n", file = mf)

+ cat("save('", pfx, "PlotData.mat','Silent','-V6');\n\n",

+ file = mf, sep = "")

+ inFiles <- c("'imagegenelist.txt'", "'topgenecoeffs.txt'",

+ "'trainingcases.txt'", "'normalisedX.txt'")

+ outFiles <- c("ImageGeneList.txt'", "TopGeneCoeffs.txt'",

+ "TrainingCases.txt'", "NormalisedX.txt'")

+ for (i1 in 1:4) {

+ cat("movefile(", inFiles[i1], ",'", pfx, outFiles[i1],

+ ");\n", file = mf, sep = "")

+ }

+ cat("\n", file = mf)

+ cat("quit;\n", file = mf)

+ close(mf)

+ sf <- file(scriptName, "w")

+ cat(matlabLocation, " -nojvm -nodesktop -nosplash ",

SR9 8

+ "< ", mFileName, " > /dev/null\n", file = sf,

+ sep = "")

+ close(sf)

+ system(paste("chmod 777 ", scriptName))

+ system(paste("./", scriptName, sep = ""))

+ }

The above function calls the the Matlab script run_binreg(UserOptions, silent) twice, once
with silent = 0 and once with silent = 1. Calling the routine with silent = 0 produces all
of the figures and text files mentioned above, but the output text files do not contain enough
information to reconstruct the figures. For example, the final metagene weights (shown in the top
half of Figure 2) are not reported. Calling the routine with silent = 1 does not produce the
figures directly, but rather stores all of the information needed to construct the figures in a Matlab
structure named “Silent”, which is saved in plotdata.mat. Mat-files produced by the most recent
version of Matlab (version 7) are compressed and cannot be read directly into R. Mat-files in version
6 format can be read into R using the R.matlab package. (We noted this after writing most of this
documentation, so this library is not used here.) Thus, we reload plotdata.mat and save it again
in version 6 format.

Note that certain aspects of the function, such as the value of matlabLocation, the form of the
shell scripts, and the system commands will need to be modified to work on other systems. The
version shown here works on my G4 Mac laptop.

Now we can test the function.

> outPth <- "MatlabFiles"

> outPfx <- "FiveFUTraining"

> dName <- "5-FU"

> userOptions <- list(excel = paste("'", file.path(outPth,

+ outPfx), "Quant.csv'", sep = ""), descFile = paste("'",

+ file.path(outPth, outPfx), "Descriptions.mat'", sep = ""),

+ genes = 45, metagenes = 5, burnin = 1000, iteration = 100,

+ skips = 2, CI = 5, crossvalidation = 1, normalization = 1)

> matlabLocation <- "/Applications/MATLAB701/bin/matlab"

> filesForDuke(outputPrefix = outPfx, outputPath = outPth,

+ drugName = dName, fullData = predictors, fullInfo = predictorsInfo)

> mFilesForDuke(outputPrefix = outPfx, outputPath = outPth,

+ drugName = dName, userOptions = userOptions, matlabLocation = matlabLocation)

Nothing exploded when we ran it. Given this setup, we can now cycle through the assays for
all of the drugs. For the meantime, we will not worry much about some of the parameter settings
(burnin, iterations, skips, CI, crossvalidation), as these do not affect the heatmaps or gene lists
produced. We focus our attention on (a) loading from the right files (excel and descFile), (b)
changing the number of genes to match that used for the drug, (c) using a minimal number of
metagenes (here 5), and (d) using normalized data. As a warning, this block takes about 4 minutes
per drug to run on my G4 Mac laptop.

SR9 9

> outPth <- "MatlabFiles"

> userOptions <- list(excel = paste("'", file.path(outPth,

+ outPfx), "Quant.csv'", sep = ""), descFile = paste("'",

+ file.path(outPth, outPfx), "Descriptions.mat'", sep = ""),

+ genes = 45, metagenes = 5, burnin = 1000, iteration = 100,

+ skips = 2, CI = 5, crossvalidation = 1, normalization = 1)

> matlabLocation <- "/Applications/MATLAB701/bin/matlab"

> outPfxList <- c("FiveFUTraining", "AdriaTraining", "CytoxTraining",

+ "DoceTraining", "EtopoTraining", "TaxolTraining",

+ "TopoTraining")

> dNameList <- c("5-FU", "Adria", "Cytox", "Doce", "Etopo",

+ "Taxol", "Topo")

> nGeneList <- c(45, 80, 35, 50, 50, 36, 150)

> for (i1 in 2:7) {

+ outPfx <- outPfxList[i1]

+ dName <- dNameList[i1]

+ userOptions$excel <- paste("'", file.path(outPth,

+ outPfx), "Quant.csv'", sep = "")

+ userOptions$descFile <- paste("'", file.path(outPth,

+ outPfx), "Descriptions.mat'", sep = "")

+ userOptions$genes <- nGeneList[i1]

+ filesForDuke(outputPrefix = outPfx, outputPath = outPth,

+ drugName = dName, fullData = predictors, fullInfo = predictorsInfo)

+ mFilesForDuke(outputPrefix = outPfx, outputPath = outPth,

+ drugName = dName, userOptions = userOptions,

+ matlabLocation = matlabLocation)

+ }

2.4 Training Set Findings

2.4.1 Matching Heatmaps

Checking the heatmaps produced, we find that these match those reported in the paper exactly for
6 of the 7 drugs; the exception is cytoxan which does not match at all. We note that the heatmap
shown in Figure 2a of the paper for cytoxan is actually the heatmap for paclitaxel; some mislabeling
has taken place. These heatmaps are shown in Figure 1 (docetaxel) and Figure 2 (all the rest); the
layout has been chosen to most closely match that presented in the paper.

SR9 10

Figure 1: Heatmap for the genes selected from the Docetaxel training set. This matches the
heatmap shown in Figure 1 of Potti et al.

Figure 2: Heatmaps for the genes selected from the training sets for topotecan, adriamycin, etopo-
side, 5-fluorouracil, paclitaxel, and cytoxan. This matches the heatmap shown in Figure 2 of Potti
et al. for the first four panels. The fifth panel shown here, for paclitaxel, matches the heatmap
shown in the paper for cytoxan. The last panel shown here, for cytoxan, does not match anything
in the paper.

SR9 11

2.4.2 Matching Gene Lists: 5-FU

We tried matching the gene lists returned by their software with the gene lists reported in the
paper, starting with 5FU.

> fiveFUNames <- read.table(file.path("MatlabFiles", "FiveFUTrainingTopGeneCoeffs.txt"),

+ sep = "\t")

> fiveFUNames$V2 <- as.character(fiveFUNames$V2)

> fiveFUNames$V2 <- sub(" +$", "", fiveFUNames$V2)

> length(intersect(fiveFUNames$V2, reportedFeatures$"5"))

[1] 0

> fiveFUInds <- match(fiveFUNames$V2, rownames(predictors))

> length(intersect(rownames(predictors)[fiveFUInds - 1],

+ reportedFeatures$"5"))

[1] 45

> length(reportedFeatures$"5")

[1] 45

If we check the lists of genes their software outputs, these do not match those reported at all.
This is because they ran the software with a version of descriptions.mat that included a header
line; as noted in the discussion of the descFile option above, this introduces an off-by-one indexing
error. Thus, all of the reported probeset ids are off by one from the ones desired.

After correcting for the off-by-one error, we get perfect agreement between the reported list for
5-FU and the list we produced using their software.

We tried the same thing with the other drugs.

2.4.3 Matching Gene Lists: Topotecan

> topoNames <- read.table(file.path("MatlabFiles", "TopoTrainingTopGeneCoeffs.txt"),

+ sep = "\t")

> topoNames$V2 <- as.character(topoNames$V2)

> topoNames$V2 <- sub(" +$", "", topoNames$V2)

> length(intersect(topoNames$V2, reportedFeatures$TOPO))

[1] 7

> topoInds <- match(topoNames$V2, rownames(predictors))

> length(intersect(rownames(predictors)[topoInds - 1],

+ reportedFeatures$TOPO))

SR9 12

[1] 150

> length(reportedFeatures$TOPO)

[1] 150

We get perfect agreement for topotecan after correcting for the off by one error.

2.4.4 Matching Gene Lists: Etoposide

> etopoNames <- read.table(file.path("MatlabFiles", "EtopoTrainingTopGeneCoeffs.txt"),

+ sep = "\t")

> etopoNames$V2 <- as.character(etopoNames$V2)

> etopoNames$V2 <- sub(" +$", "", etopoNames$V2)

> length(intersect(etopoNames$V2, reportedFeatures$ETOPO))

[1] 3

> etopoInds <- match(etopoNames$V2, rownames(predictors))

> length(intersect(rownames(predictors)[etopoInds - 1],

+ reportedFeatures$ETOPO))

[1] 50

> length(reportedFeatures$ETOPO)

[1] 50

We get perfect agreement for etoposide after correcting for the off by one error.

2.4.5 Matching Gene Lists: Adriamycin

> adriaNames <- read.table(file.path("MatlabFiles", "AdriaTrainingTopGeneCoeffs.txt"),

+ sep = "\t")

> adriaNames$V2 <- as.character(adriaNames$V2)

> adriaNames$V2 <- sub(" +$", "", adriaNames$V2)

> length(intersect(adriaNames$V2, reportedFeatures$ADRIA))

[1] 0

> adriaInds <- match(adriaNames$V2, rownames(predictors))

> length(intersect(rownames(predictors)[adriaInds - 1],

+ reportedFeatures$ADRIA))

[1] 75

SR9 13

> length(reportedFeatures$ADRIA)

[1] 80

> adriaOut <- setdiff(reportedFeatures$ADRIA, rownames(predictors)[adriaInds -

+ 1])

> unlist(mget(adriaOut, hgu95av2SYMBOL))

1258_s_at 1847_s_at 1909_at 1910_s_at 2034_s_at
"ERCC4" "BCL2" "BCL2" "BCL2" "CDKN1B"

For adriamycin, we match 75 of the 80 genes reported after correcting for the off by one error.
The 5 outliers and their gene symbols are given above.

2.4.6 Matching Gene Lists: Paclitaxel

> taxolNames <- read.table(file.path("MatlabFiles", "TaxolTrainingTopGeneCoeffs.txt"),

+ sep = "\t")

> taxolNames$V2 <- as.character(taxolNames$V2)

> taxolNames$V2 <- sub(" +$", "", taxolNames$V2)

> length(intersect(taxolNames$V2, reportedFeatures$PAC))

[1] 0

> taxolInds <- match(taxolNames$V2, rownames(predictors))

> length(intersect(rownames(predictors)[taxolInds - 1],

+ reportedFeatures$PAC))

[1] 28

> length(reportedFeatures$PAC)

[1] 35

> taxolOut <- setdiff(reportedFeatures$PAC, rownames(predictors)[taxolInds -

+ 1])

> unlist(mget(taxolOut, hgu95av2SYMBOL))

1258_s_at 1802_s_at 1878_g_at 33047_at 36519_at
"ERCC4" "ERBB2" "ERCC1" "BCL2L11" "ERCC1"
40567_at 114_r_at

"K-ALPHA-1" "MAPT"

For paclitaxel, we match all but 7 of the reported genes after accounting for the off by one error.
The 7 outliers and their gene symbols are given above.

SR9 14

2.4.7 Matching Gene Lists: Docetaxel

> doceNames <- read.table(file.path("MatlabFiles", "DoceTrainingTopGeneCoeffs.txt"),

+ sep = "\t")

> doceNames$V2 <- as.character(doceNames$V2)

> doceNames$V2 <- sub(" +$", "", doceNames$V2)

> length(intersect(doceNames$V2, reportedFeatures$DOCE))

[1] 0

> doceInds <- match(doceNames$V2, rownames(predictors))

> length(intersect(rownames(predictors)[doceInds - 1],

+ reportedFeatures$DOCE))

[1] 31

> length(reportedFeatures$DOCE)

[1] 50

> doceOut <- setdiff(reportedFeatures$DOCE, rownames(predictors)[doceInds -

+ 1])

> unlist(mget(doceOut, hgu95av2SYMBOL))

1258_s_at 1751_g_at 1802_s_at 1878_g_at 1997_s_at
"ERCC4" "FARSLA" "ERBB2" "ERCC1" "BAX"

2085_s_at 31431_at 31432_g_at 31638_at 32099_at
"CTNNA1" "FCGRT" "FCGRT" NA "SAFB2"
32331_at 32523_at 32843_s_at 33047_at 33133_at
"AK3L1" "CLTB" "FBL" "BCL2L11" "FLII"
33214_at 33285_i_at 33371_s_at 40567_at
"MRPS12" "SIKE" "RAB31" "K-ALPHA-1"

For docetaxel, we match 31 of the 50 reported features after accounting for the off by one error.
The 19 outliers and their gene symbols are given above.

2.4.8 Matching Gene Lists: Cytoxan

> cytoxNames <- read.table(file.path("MatlabFiles", "CytoxTrainingTopGeneCoeffs.txt"),

+ sep = "\t")

> cytoxNames$V2 <- as.character(cytoxNames$V2)

> cytoxNames$V2 <- sub(" +$", "", cytoxNames$V2)

> length(intersect(cytoxNames$V2, reportedFeatures$CYTOX))

[1] 0

SR9 15

> cytoxInds <- match(cytoxNames$V2, rownames(predictors))

> length(intersect(rownames(predictors)[cytoxInds - 1],

+ reportedFeatures$CYTOX))

[1] 0

> length(reportedFeatures$CYTOX)

[1] 35

For cytoxan, we just cannot match their reported lists at all.

2.4.9 Matching Wrapup, and Exploring Outliers

After correcting for the off-by-one error, we get perfect agreement between the reported lists and
those that we produce for 3 of the 6 genes (cytoxan just does not work). For docetaxel, there are
19 outliers. For adriamycin, there are 5 outliers. For paclitaxel there are 7 outliers. We have been
unable to discern how the reported outliers can be derived from the training data. The associated
p-values that we get using two-sample t-tests are not small.

For docetaxel, Chang et al provide a supplemental table of the 92 genes that they found to be
most useful in discriminating responders from nonresponders in their data (the test data for Potti et
al). This table is available online from the Lancet at http://image.thelancet.com/extras/01art11086webtable.pdf.

Of the 19 docetaxel outliers, 14 are in the Chang list:

> changReportedDoce <- c("1751_g_at", "1997_s_at", "2085_s_at",

+ "31431_at", "31432_g_at", "31638_at", "32099_at",

+ "32331_at", "32523_at", "32843_s_at", "33133_at",

+ "33214_at", "33285_i_at", "33371_s_at")

These 14 probesets are in one contiguous block in the table from Chang et al — they occupy
positions 7:20. Note that these matches occur without offsetting the probeset ids by one. Of the
31 that we can derive from the software, 1, 36208 at, is in the Chang list before offsetting, and 1,
38831 f at, is in the Chang list after offsetting.

We cannot match the other 5 docetaxel outliers,

> notInChang <- c("1258_s_at", "1802_s_at", "1878_g_at",

+ "33047_at", "40567_at")

but they are still quite interesting. All 5 are also in the list of 7 outliers for paclitaxel. The two others
in the paclitaxel list are 36519 at, “ERCC1”, and 114 r at, “MAPT”. The first of these, ERCC1,
is also interrogated by 1878 g at, which is a common outlier for both paclitaxel and docetaxel.
There is one probeset, 1258 s at or “ERCC4”, which is an outlier for docetaxel, paclitaxel, and
adriamycin. The ERCC family is overrepresented in the outliers.

Many of the outlier genes are explicitly named in the main text of Potti et al. For docetaxel,
“both predictors were linked to expected targets for docetaxel, including BCL2, WDR7 (also known

http://image.thelancet.com/extras/01art11086webtable.pdf

SR9 16

as TRAG), ERBB2 and tubulin genes”. For paclitaxel, “An examination of the genes that consti-
tuted the paclitaxel predictor identified microtubule-associated protein tau (MAPT), described
previously as a determinant of paclitaxel sensitivity.” For adriamycin, “excision repair genes (for
example, ERCC4), retinoblastoma pathway genes and BCL2 constituted the adriamycin predictor.”

While we are unable to explain how they were chosen, the outliers are evidently important.

3 Training and Test: Docetaxel

In addition to running their software and getting the associated gene lists and heatmaps for the
training sets, we would also like to examine the behavior of their software when we supply a test
set as well. To this end, we apply the method to docetaxel, using their Novartis A set arrays for
training and the Chang SOFT file quantifications for testing.

The functions that involve both training and test sets require some modification, as we typically
do not have the same type of supporting information for the two sets of data, and the two datasets
may have information recorded for different probesets. Because of this, we will simply provide a
customized set of output for docetaxel here. We will modify the m-file writing function.

In addition to the R scripts, some modifications need to be made on the Matlab side as well.
A minor modification occurs because more figures and files are produced if there are test samples.
However, a more major alteration is needed. This is because we use two versions of one of their
m-files, Mbinregsvd.m. The version of Mbinregsvd.m posted at Combo1.php does something we
believe is wrong: it performs the SVD using the expression matrix for the training and test sets
combined. This can allow information to leak from the test set into the training set and contaminate
the results. The Duke group also provided an “experimental” version of this m-file that uses only
the training data for the SVD.

To illustrate the effects, we have made the original version of Mbinregsvd.m available as Mbin-
regsvd_old.m and the experimental version as Mbinregsvd.m. We have produced a modified
run_binreg_old.m which differs from run_binreg.m solely in terms of which version of Mbin-
regsvd.m it invokes.

3.1 Exporting Both Training and Testing Data

First, export the quantification data.

> tempDoce <- predictors[, predictorsInfo$drugName == "Doce"]

> tempDoce <- cbind(tempDoce, changSoft[rownames(tempDoce),

+])

> tempStatus <- predictorsInfo$resp[predictorsInfo$drug ==

+ "Doce"]

> tempStatus <- as.character(tempStatus)

> tempStatus <- c(tempStatus, as.character(changInfo$Resp))

> tempValue <- rep(0, length(tempStatus))

> tempValue[tempStatus == "Sensitive"] <- 1

> tempValue[tempStatus == "Resp"] <- 2

SR9 17

> tempValue[tempStatus == "NR"] <- 2

> tempTable <- rbind(tempValue, tempDoce)

> write.table(tempTable, file = file.path("MatlabFiles",

+ "DoceTrainAndTestQuant.csv"), row.names = FALSE,

+ col.names = FALSE, sep = ",")

> write.table(predictorsInfo[predictorsInfo$drug == "Doce",

+], file = file.path("MatlabFiles", "DoceTrainAndTestSampleInfo.csv"),

+ sep = ",")

> write.table(changInfo, file = file.path("MatlabFiles",

+ "DoceTrainAndTestSampleInfo.csv"), sep = ",", append = TRUE)

> write.table(rownames(tempDoce), file = file.path("MatlabFiles",

+ "DoceTrainAndTestGeneIDs.csv"), row.names = FALSE,

+ col.names = FALSE, sep = ",")

Note that the assigned classification value of 2 indicates a test sample (here, those from the
Chang data); status is “blinded” in the sense that the same value is used for all test samples.

3.2 Revising the M-file

Next, we revise the script for writing m-files to deal with the case where both training and testing
samples are present.

> mFilesForDukeTrainTest <- function(outputPrefix, outputPath,

+ drugName, userOptions, matlabLocation) {

+ pfx <- file.path(outputPath, outputPrefix)

+ mFileName <- paste(pfx, ".m", sep = "")

+ scriptName <- paste(pfx, ".sh", sep = "")

+ dukeLocn <- file.path("..", "PublicData", "DukeWebSite",

+ "Pittman_zip")

+ mf <- file(mFileName, "w")

+ cat("addpath('", dukeLocn, "');\n\n", file = mf,

+ sep = "")

+ cat("txt2mat2('", pfx, "GeneIDs.csv');\n", file = mf,

+ sep = "")

+ cat("movefile('descriptions.mat','", pfx, "Descriptions.mat');\n\n",

+ file = mf, sep = "")

+ for (i1 in 1:length(userOptions)) {

+ cat("UserOptions.", names(userOptions)[i1], "=",

+ userOptions[[i1]], ";\n", file = mf, sep = "")

+ }

+ cat("\n", file = mf)

+ cat("silent = 0;\n", file = mf)

+ cat("run_binreg(UserOptions, silent);\n\n", file = mf)

SR9 18

+ figNames <- c("PCA", "MetaWts", "ProbVsWt", "ProbVsWtTest",

+ "CrossVal", "Heatmap")

+ figPfx <- c("'-dpng'", "'-dpdf'", "'-depsc'")

+ figSfx <- c(".png", ".pdf", ".eps")

+ figPth <- file.path(outputPath, "Figures", outputPrefix)

+ for (i1 in c(1, 2, 3, 4, 5)) {

+ cat("figure(", i1, ");\n", file = mf, sep = "")

+ cat("set(gcf,'Color','w');\n", file = mf)

+ for (i2 in 1:3) {

+ cat("print(", figPfx[i2], ",'", figPth, figNames[i1],

+ figSfx[i2], "');\n", file = mf, sep = "")

+ }

+ cat("\n", file = mf)

+ }

+ cat("figure(11);\n", file = mf, sep = "")

+ cat("set(gcf,'Color','w');\n", file = mf)

+ cat("title('", drugName, ", ", userOptions$genes,

+ " Genes');\n", file = mf, sep = "")

+ cat("xlabel('Samples');\n", file = mf)

+ cat("ylabel('Genes');\n", file = mf)

+ for (i1 in 1:3) {

+ cat("print(", figPfx[i1], ",'", figPth, figNames[length(figNames)],

+ figSfx[i1], "');\n", file = mf, sep = "")

+ }

+ cat("\n", file = mf)

+ cat("silent = 1;\n", file = mf)

+ cat("run_binreg(UserOptions, silent);\n\n", file = mf)

+ cat("load('plotdata.mat');\n", file = mf)

+ cat("save('", pfx, "PlotData.mat','Silent','-V6');\n\n",

+ file = mf, sep = "")

+ inFiles <- c("'imagegenelist.txt'", "'topgenecoeffs.txt'",

+ "'trainingcases.txt'", "'normalisedX.txt'", "'validationcases.txt'")

+ outFiles <- c("ImageGeneList.txt'", "TopGeneCoeffs.txt'",

+ "TrainingCases.txt'", "NormalisedX.txt'", "ValidationCases.txt'")

+ for (i1 in 1:5) {

+ cat("movefile(", inFiles[i1], ",'", pfx, outFiles[i1],

+ ");\n", file = mf, sep = "")

+ }

+ cat("\n", file = mf)

+ pfx <- paste(pfx, "Old", sep = "")

+ outputPrefix <- paste(outputPrefix, "Old", sep = "")

+ cat("silent = 0;\n", file = mf)

SR9 19

+ cat("run_binreg_old(UserOptions, silent);\n\n", file = mf)

+ figNames <- c("PCA", "MetaWts", "ProbVsWt", "ProbVsWtTest",

+ "CrossVal", "Heatmap")

+ figPfx <- c("'-dpng'", "'-dpdf'", "'-depsc'")

+ figSfx <- c(".png", ".pdf", ".eps")

+ figPth <- file.path(outputPath, "Figures", outputPrefix)

+ for (i1 in c(1, 2, 3, 4, 5)) {

+ cat("figure(", i1, ");\n", file = mf, sep = "")

+ cat("set(gcf,'Color','w');\n", file = mf)

+ for (i2 in 1:3) {

+ cat("print(", figPfx[i2], ",'", figPth, figNames[i1],

+ figSfx[i2], "');\n", file = mf, sep = "")

+ }

+ cat("\n", file = mf)

+ }

+ cat("figure(11);\n", file = mf, sep = "")

+ cat("set(gcf,'Color','w');\n", file = mf)

+ cat("title('", drugName, ", ", userOptions$genes,

+ " Genes');\n", file = mf, sep = "")

+ cat("xlabel('Samples');\n", file = mf)

+ cat("ylabel('Genes');\n", file = mf)

+ for (i1 in 1:3) {

+ cat("print(", figPfx[i1], ",'", figPth, figNames[length(figNames)],

+ figSfx[i1], "');\n", file = mf, sep = "")

+ }

+ cat("\n", file = mf)

+ cat("silent = 1;\n", file = mf)

+ cat("run_binreg_old(UserOptions, silent);\n\n", file = mf)

+ cat("load('plotdata.mat');\n", file = mf)

+ cat("save('", pfx, "PlotData.mat','Silent','-V6');\n\n",

+ file = mf, sep = "")

+ inFiles <- c("'imagegenelist.txt'", "'topgenecoeffs.txt'",

+ "'trainingcases.txt'", "'normalisedX.txt'", "'validationcases.txt'")

+ outFiles <- c("ImageGeneList.txt'", "TopGeneCoeffs.txt'",

+ "TrainingCases.txt'", "NormalisedX.txt'", "ValidationCases.txt'")

+ for (i1 in 1:5) {

+ cat("movefile(", inFiles[i1], ",'", pfx, outFiles[i1],

+ ");\n", file = mf, sep = "")

+ }

+ cat("\n", file = mf)

+ cat("quit;\n", file = mf)

+ close(mf)

SR9 20

+ sf <- file(scriptName, "w")

+ cat(matlabLocation, " -nojvm -nodesktop -nosplash ",

+ "< ", mFileName, " > /dev/null\n", file = sf,

+ sep = "")

+ close(sf)

+ system(paste("chmod 777 ", scriptName))

+ system(paste("./", scriptName, sep = ""))

+ }

While the above function definition is long, there are only a few qualitative changes. Specifically:

1. The loop for producing figures now includes Figure 4, showing the test sample predictions.

2. The list of text files has been expanded to include validationcases.txt.

3. In the second half of the code, we call run_binreg_old instead of run_binreg.

4. In the second half of the code, the prefix (pfx) has been expanded to paste(pfx, ’Old’,
sep=), so that the files produced by run_binreg_old will have different names.

3.3 Invoking the Script

Finally, we invoke the revised script.

> outPth <- "MatlabFiles"

> outPfx <- "DoceTrainAndTest"

> dName <- "Doce"

> userOptions <- list(excel = paste("'", file.path(outPth,

+ outPfx), "Quant.csv'", sep = ""), descFile = paste("'",

+ file.path(outPth, outPfx), "Descriptions.mat'", sep = ""),

+ genes = 50, metagenes = 5, burnin = 1000, iteration = 100,

+ skips = 2, CI = 5, crossvalidation = 1, normalization = 1)

> matlabLocation <- "/Applications/MATLAB701/bin/matlab"

> mFilesForDukeTrainTest(outputPrefix = outPfx, outputPath = outPth,

+ drugName = dName, userOptions = userOptions, matlabLocation = matlabLocation)

3.4 Findings from the Training and Testing Data

3.4.1 Comparing Gene Lists

> geneListTrainOnly <- read.table(file.path("MatlabFiles",

+ "DoceTrainingTopGeneCoeffs.txt"), sep = "\t")

> geneListWithTestOldAlg <- read.table(file.path("MatlabFiles",

+ "DoceTrainAndTestOldTopGeneCoeffs.txt"), sep = "\t")

> geneListWithTestNewAlg <- read.table(file.path("MatlabFiles",

SR9 21

Figure 3: PCA plots for Docetaxel Training Data, showing the two principal components that are
most significant in a model built to separate Group 0 (blue) from Group 1 (red). When only the
training data is used in the metagene SVD, the first principal component (Factor 1, y-axis, left)
is the most important factor for separating the two groups. When both training and test data
are used in the SVD, this separation need not be driven by the first principal component. For
docetaxel, the second principal component (Factor 2, y-axis, right) is the most important.

+ "DoceTrainAndTestTopGeneCoeffs.txt"), sep = "\t")

> length(intersect(geneListWithTestOldAlg$V2, geneListWithTestNewAlg$V2))

[1] 50

> length(intersect(geneListWithTestOldAlg$V2, geneListTrainOnly$V2))

[1] 47

The lists of genes selected when the test data are included are the same using both versions of
the code. However, these lists do not precisely match that produced using the training data alone.
This difference is due to the normalization step; quantile normalization is applied to all of the data
supplied. Thus, when test data is supplied, normalization is acting on all of the data, training and
test, rather than mapping the test values to quantiles defined by the training data.

The other differences seen using the two versions of Mbinregsvd are much more extreme.

3.4.2 Comparing PCA Plots

Comparing the PCA plots for the training samples, shown in Figure 3, the plots look very different,
even though the sensitive and resistant groups are clearly separated in both. Using the experimental
code, this difference is driven by the first factor, matching our own findings. Using the original

SR9 22

Figure 4: Metagene profile plots showing the weights assigned to each principal component (top)
and to the individual genes (bottom) after the gene PCs are combined using the weights shown
above. In the case of docetaxel, when just the training data is used in the SVD (left), most of the
weight is given to PC1. When both training and test data are used in the SVD, most of the weight
is given to PC2. The final weights assigned to the individual genes (bottom) are very similar in
the two cases, but not identical. The difference is driven by “leaking” of information about major
divisions in the data into several principal components.

code, the first factor is actually associated with the division between training and test sets; the
second is associated with the differences in the training set. In general, we expect 3 factors to
be important using this approach: the two mentioned above, and a third corresponding to major
divisions in the test set if such are present. The relative sizes of these 3 factors will vary from one
dataset to the next.

3.4.3 Comparing Metagene Weight Profiles

Looking at the plots of which metagenes are important and the individual gene weights, shown in
Figure 4, we see the abrupt change in the metagene weightings remarked on above, even though
the gene weighting profiles are largely parallel. The differences that exist are due to a superposition
of the 3 principal component factors discussed above.

3.4.4 Comparing Heatmaps

Looking at heatmaps of the data used to perform the SVDs, the only major visible distinction when
just the training data is used is that between groups 0 and 1. When both the training and test
data are used, however, several major divisions are visible. The most apparent are those between

SR9 23

Figure 5: Heatmaps showing the data used in performing the SVDs. Using only the training
data (left), there is one clear visual distinction, between group 0 and group 1. This difference is
captured in the first PC. Using both the training and the test data (right), there are at least two
clear distinctions: (1) between training and test, and (2) within training. Separations within the
test data are more subtle, but if they exist they will be captured by the the PCs as well.

training and test, captured in PC1, and between groups 0 and 1 in the training data, captured in
PC2. Other divisions are harder to see, but divisions within the test data can be captured.

3.4.5 Comparing Training Set Predictions

The plots of straight predictions for the training samples, shown in Figure 6, are largely parallel,
as are the LOOCV predictions, shown in Figure 7. We do a good job of predicting the training
data, and we misclassify the same samples with cross-validation.

3.4.6 Comparing Test Set Predictions

The predictions for the test cases, shown in Figure 8, however, are where the differences are
most stark. Using the experimental code, all of the test samples are classed as group 1, matching
our experience. Using the original code, the bleedover of principal component information causes
the test samples to be split roughly evenly. This can lead to overly optimistic claims for predictive
accuracy.

SR9 24

Figure 6: Predicting group membership of the samples in the training data, we do a good job of
classification whether we use just the training data (left) or both the training and test (right). As
the model is chosen to separate the training samples, this is not surprising.

Figure 7: Predicting group membership of the samples in the training data using leave-one out
cross-validation, we do a good job of classification whether we use just the training data (left) or
both the training and test (right). The same training samples are misclassified. The shift in the
code has not affected the training set predictions a great deal.

SR9 25

Figure 8: Predicting group membership of the samples in the test set data, we do a poor job when
just the training data is used to construct the model (left), assigning all of the test data to one
group. By contrast, when the SVD is performed using both training and test data, the test set
predictions split nicely into two groups. Information about a split in the test data has “leaked” into
the metagenes from the test set.

	Problem Definition
	Training Data, Starting With 5-FU
	Producing Files for the Software (Training)
	Parameter Settings and Outputs
	Invoking the Duke Software from R (Training)
	Training Set Findings
	Matching Heatmaps
	Matching Gene Lists: 5-FU
	Matching Gene Lists: Topotecan
	Matching Gene Lists: Etoposide
	Matching Gene Lists: Adriamycin
	Matching Gene Lists: Paclitaxel
	Matching Gene Lists: Docetaxel
	Matching Gene Lists: Cytoxan
	Matching Wrapup, and Exploring Outliers

	Training and Test: Docetaxel
	Exporting Both Training and Testing Data
	Revising the M-file
	Invoking the Script
	Findings from the Training and Testing Data
	Comparing Gene Lists
	Comparing PCA Plots
	Comparing Metagene Weight Profiles
	Comparing Heatmaps
	Comparing Training Set Predictions
	Comparing Test Set Predictions

