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Summary. Next-generation sequencing (NGS) technology generates millions of short reads, which provide valuable informa-
tion for various aspects of cellular activities and biological functions. A key step in NGS applications (e.g., RNA-Seq) is to
map short reads to correct genomic locations within the source genome. While most reads are mapped to a unique location,
a significant proportion of reads align to multiple genomic locations with equal or similar numbers of mismatches; these are
called multireads. The ambiguity in mapping the multireads may lead to bias in downstream analyses. Currently, most practi-
tioners discard the multireads in their analysis, resulting in a loss of valuable information, especially for the genes with similar
sequences. To refine the read mapping, we develop a Bayesian model that computes the posterior probability of mapping
a multiread to each competing location. The probabilities are used for downstream analyses, such as the quantification of
gene expression. We show through simulation studies and RNA-Seq analysis of real life data that the Bayesian method yields
better mapping than the current leading methods. We provide a C++ program for downloading that is being packaged into a
user-friendly software.
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1. Introduction
Next-generation sequencing (NGS) technology produces a
vast amount of sequence data at low cost and provides enor-
mous opportunities for the life sciences. RNA-Seq is an NGS
application that generates millions of short RNA reads. By
mapping and counting individual short sequence reads to spe-
cific genomic locations on the source genome, gene expression
can be quantified as the number of mapped reads, which is
considered the “digital” expression as opposed to the “analog”
expression of relative transcript abundance in microarrays.
Due to its low cost and high precision, RNA-Seq has become
the primary tool for sequencing all the RNAs in species rang-
ing from yeast to human (Cloonan et al., 2008; Lister et al.,
2008; Marioni et al., 2008; Morin et al., 2008; Mortazavi et
al., 2008; Nagalaskshmi et al., 2008; Trapnell et al., 2010).

Many statistical challenges lie ahead in various steps of the
RNA-Seq, preventing the technology from reaching its full
potential. A key step in the RNA-Seq is read mapping, which
infers the origin of short reads on a reference genome. Below
we provide a quick review of the main issues in this step.

1.1 Read Mapping and Related Sources of Variations
We consider short RNA reads generated from major NGS
platforms such as the Genome Analyzer (Solexa) from Illu-

mina (San Diego, California, USA), and SOLiD from Ap-
plied Biosystems (Foster City, California, USA). Regardless
the platform, a key step in processing the RNA-Seq data is to
align each short read to a reference genome based on sequence
similarities.

Two sources of variations in read alignment complicate the
accuracy of this step.

(i) The first source is sequencing errors (Rougemont et al.,
2008; Kao, Stevens, and Song, 2009; Bravo and Irizarry,
2010; Ji et al., 2011) from upstream analysis, which oc-
casionally occur during the process of generating short
reads. In particular, there could be machine and sys-
temic errors in sequencing the bases of a read. The er-
ror rates can be represented by the quality score un-
derlying each base (see Figure 3 in Web Appendix 1).
These sequencing errors will cause mismatches between
the short reads and the genome, which should not be
counted.

(ii) The second source is called hidden nucleotide variations,
such as a mutation or SNP. The main cause for this
type of variations is that the short reads are typically
mapped to a public reference genome rather than the
sample genome from which the reads are generated.
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Hence, variations between the two genome versions (i.e.,
SNPs) may cause mismatches between the reads and the
reference genome.

Several published methods have been developed for align-
ing the short reads to the reference genome. For example, Li,
Ruan, and Durbin (2008) considered mapping short DNA se-
quences based on the quality scores and developed software
called MAQ. Another popular program is Bowtie (Langmead
et al. 2009), an ultrafast, memory-efficient alignment program
that aligns short reads to large genomes. Additional represen-
tative works include the SOAP by Li et al. (2009), the RMAP by
Smith, Xuan, and Zhang (2008), and the SHRiMP by Rumble
et al. (2009). Despite the aforementioned sources of varia-
tions in read mapping, most mappable short reads (>75%)
based on available methods (e.g., Bowtie) align to a single
genomic location with relatively high precision. These reads
are called unique reads. However, a significant number of reads
are mapped to more than one genomic location with similar
fidelity, and these reads are called multireads. Importantly,
multireads disproportionally come from the genes with similar
sequences (e.g., duplicated genes) and essentially determine
their expression levels. The alignment of multireads is highly
susceptible to the two sources of variations above, making it
difficult to map them to appropriate locations.

We aim to improve the mapping of the multireads, as a re-
finement step after the general reads alignment is completed.
Figure 1 demonstrates where our proposed method stands in
the entire process of the NGS data analyses.

Currently, most practitioners would discard the multireads
in subsequent analyses such as gene expression quantification.
This practice generates a large bias in estimating the expres-
sion levels of duplicated genes. As an initial attempt, Mor-
tazavi et al. (2008) proposed a proportional alignment method
in which unique reads are first mapped, and then multireads
are aligned to equally similar loci in proportion to the num-
ber of corresponding mapped unique reads. The key idea of
the proportional method is that the individual numbers of
unique reads are used to infer the probabilities of mapping the
multireads. While the proportional method provides a simple
and valuable solution to the mapping of the multireads, it
fails to account for the mismatch profiles between the unique
reads and the genomic locations. For example, using the pro-
portional method a multiread will be mapped to a genomic
location with a high probability as long as that location pos-
sesses a large number of unique reads, even when the unique
reads are relatively poorly matched to the location. In other
words, the proportional method ignores the matching quality
between the unique reads and the reference genome, hence
it is unable to account for the source of variation (ii) listed
above.

Subsequent research development in the literature has also
attempted to address the problem of mapping multireads, see
Li et al. (2010), and Taub, Lipson, and Speed (2010). These
authors correctly pointed out that the aforementioned sources
of variations need to be accounted for in mapping the multi-
reads. To this end, we propose a Bayesian mapping of mul-
tireads (BM-Map) approach that computes a posterior prob-
ability of mapping each multiread to a genomic location as
well. Unlike the proportional method that only considers the
equally best aligned genomic locations, the BM-Map evalu-

Figure 1. A flow chart of the main steps in the RNA-Seq ap-
proach. Our proposed method, BM-MAP, considers mapping
the multireads after the general read alignment is finished.
The available tools for each step are listed on the right side
of the chart. Currently, there is only one method, the propor-
tional method, that deals with the mapping of the multireads.
The drawbacks of the proportional method are discussed in
Section 1.1. This figure appears in color in the electronic ver-
sion of this article.

ates genomic locations with unequal numbers of mismatches
to a multiread. More importantly, the BM-Map utilizes three
sources of information when mapping the multireads: the se-
quencing error profiles, the likelihood of hidden nucleotide
variations, and the expression levels of competing genomic
locations (see Figure 1 in Web Appendix 1). In contrast, the
proportional method only uses the last source of information.

1.2 RNA-Seq Data
We will analyze a yeast RNA-Seq data set from Nagalaskshmi
et al. (2008) and a human RNA-Seq data set from Pickrell
et al. (2010). The read length for the yeast data is K =
35 while for the human data it is K = 46. We will use the
yeast data analysis to illustrate our methodology. In particu-
lar, the yeast data set contains a total of 22.4 million reads,
and are generated using the Solexa Genome Analyzer. We ap-
ply Bowtie (version 10.0.1; Langmead et al., 2009) to process
the initial read alignment, allowing a read to be mapped to
multiple locations. To include as much information as possi-
ble, we consider the multireads that are mapped to a genomic
location with up to three mismatches (the default is up to two
mismatches). Consequently, we refer to a genomic location as
a hit if a read is mapped to that location with no more than
three mismatches. A top hit is a genomic location to which a
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read is mapped with the fewest number of mismatches. The
following is assumed in preprocessing the data: (1) a read is
considered mappable if it has a top hit with no more than
two mismatches; (2) given the top hit of a mappable read,
other hits with no more than two extra mismatches and no
more than three total mismatches are defined as additional
competing genomic locations (we did not include any hits
with more than three total mismatches because Bowtie only
outputs hits with up to three mismatches); (3) reads with
more than five competing locations are excluded because these
reads likely originate from repetitive elements in the genome.
With these criteria, we obtain 6,912,733 mappable reads, and
among them, 5,256,339 are unique reads (those with only one
hit) and 1,656,394 are multireads (with more than one hit).

2. Methodology
2.1 Probability Model
To avoid confusion, we use the term “location” to represent
a segment of the genome to which each read is mapped. We
use the term “position” to represent a single base of a read
or a genomic location. We proceed by introducing our model
for a single multiread. The same model will be applied in-
dependently and repeatedly to other multireads in the read
mapping. We will index multireads by m but will drop the
index when needed for simplicity. This strategy allows us to
analyze the ∼1.6 million multireads in parallel, achieving a
reasonable computational speed. For a given multiread, sup-
pose that it is mappable to T genomic locations, indexed by
t = 1 , . . . , T. Each genomic location corresponds to a segment
of the genome with the same length as the multiread. That is,
the multiread and each genomic location aligns perfectly from
the first position to the last. For the yeast data, the length
K = 35. Therefore, each genomic location consists of K = 35
positions.

We assume that a set of unique reads overlap with genomic
location t, t = 1 , . . . , T. Here overlap means partial alignment,
i.e., a unique read can overlap with a subset of the positions on
the location, rather than the entire location as the multiread.
For example, if the location t spans from genomic position
101 to 135, the starting position of the multiread aligns to
position 101 and the ending position of the multiread aligns
to position 135. In contrast, any overlapping unique read only
needs to have a starting position or ending position in [101,
135] (see Figure 2 in Web Appendix 1). Among the set of
unique reads, we assume that nkt reads at least overlap with
the kth position of genomic location t, and we index these
unique reads by l, l = 1 , . . . , nkt .

Mismatch profiles. Given the multiread, the observed
data consist of the position-level mismatch profiles between
the genomic location t and the multiread, and between the
genomic location t and all the overlapping unique reads. Below
we introduce the labels for these mismatch profiles. We will
use a generic notation r = [r1, r2] to denote a row vector of
two scalars r1 and r2. Two row vectors r1 and r2 concatenated
in the form [r1, r2] form a new row vector.

• For the multiread and location t, a mismatch could occur
at each of the K positions. Let ekt = 1 or ekt = 0 denote
the event that there is a mismatch or perfect match be-
tween the multiread and location t at the kth position,

respectively. Then the observed data at location t for the
multiread are given by a K-dimensional mismatch vector
et = [e1t , . . . , eK t ].

• We need an additional label l to index the nkt unique
reads that overlap with the kth position of location t.
Let gl ,kt = 1 or gl ,kt = 0, l = 1 , . . . , nkt , denote the event
that there is a mismatch or perfect match between the
unique read l and location t at the kth position, respec-
tively. We denote the row vector gk t = [g1,k t , . . . , gn k t ,k t ]
the mismatch indicators at the kth position for all the
corresponding overlapping unique reads. Lastly, define
gt = [g1t , . . . , gK t ] as the vector of mismatch indicators
for all the overlapping unique reads with location t, which
is the observed data at location t for its overlapping
unique reads.

In summary, the full data are the vector [et , gt ,
t = 1, . . . , T ].

Parameters. We want to estimate the probability of mis-
match between the kth position of the genomic location t and
the corresponding position of a read, unique, or multiple. We
denote pkt ≡ Pr(ekt = 1) the probability of a mismatch be-
tween the kth position of location t and the kth position of the
multiread. Similarly, denote ql ,kt ≡ Pr(gl ,kt = 1) the probabil-
ity of mismatch between the kth position of location t and the
corresponding position of unique read l. Again, due to partial
alignment, the corresponding position of the unique read may
not be the k-position of the read. Let αkt be the probability of
sequencing error at the kth position of the multiread mapped
to location t. Let βkt be the probability of hidden nucleotide
variations at the kth position of location t. We assume that

pk t = αkt + βk t (1 − αkt ). (1)

Similarly, let αl ,kt be the probability of sequencing error at the
position of unique read l that corresponds to the kth position
of location t. We assume that for unique read l

ql,k t = αl,k t + βk t (1 − αl,k t ). (2)

Models (1) and (2) essentially follow the probability law
of two independent joint events. To see this, consider pkt and
use A to label the event that {there is a sequencing error} and
B to label the event that {there is a hidden nucleotide varia-
tion}. Then using our notation, we have that the probability
of mismatch p = Pr(A∪B), the probability of sequencing error
α = Pr(A), and the probability of hidden nucleotide variation
β = Pr(B). Model (1) says that p = α + β − αβ, which is the
probability law of two independent events Pr(A∪B) = Pr(A)
+ Pr(B) − Pr(A)Pr(B).

In our subsequent analysis of the RNA-Seq data, we com-
pute simple estimates (sample proportions) for αkt and αl ,kt

based on the position specific or quality score specific mis-
match profiles from all the unique reads. The main idea is
to use the millions of unique reads from the RNA-Seq data
to reliably estimate the α values and plug in the estimates
in our proposed model. Due to the large sample size, rather
than imposing a prior distribution on the α’s, we decide to fix
them at their estimated sample means. Figure 3 in Web Ap-
pendix 1 shows these values and how they are computed. We
estimate βkt based on posterior inference, which is described
below.
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Likelihood, prior, and posterior. We write the likeli-
hood contribution from the unique reads and the multiread
separately. First, the contribution to the likelihood from the
unique reads at location t is given by

L(gt ) =
K∏

k=1

n k t∏
l=1

q
g l , k t

l ,k t (1 − ql,k t )1−g l , k t . (3)

Recall that nkt is the number of unique reads that at least
overlap with the kth position of the genomic location t. Sec-
ond, let ZM be the true unknown genomic location for the
multiread and define ZM = t as the event that the multiread
is generated from genomic location t. Then the contribution
to the likelihood from the multiread at location t is

L(et ) ≡ Pr(et |ZM = t) =
K∏

k=1

p
ek t
k t (1 − pk t )1−ek t · I(ZM = t),

(4)

where I (·) is the indicator function. The full likelihood is

T∏
t=1

L(gt )L(et ),

in which βkt is an unknown parameter (the values of α’s are
fixed), and the probability of the event ZM = t is to be esti-
mated.

We assume that the prior for βkt is given by

βk t ∼ B(a, b), (5)

where B(a, b) represents a beta distribution with the density
function proportional to xa−1(1 − x)b−1, a > 0, b > 0. In our
analysis for the yeast RNA-Seq data, a = b = 1. In addition,
we assume that the prior Pr(ZM = t) is proportional to the
number of unique reads mapped to location t. Note that this
construction of Pr(ZM = t) follows the main idea in Mortazavi
et al. (2008).

We want to estimate the posterior probability of mapping
the multiread to location t, given by

pM (t) ≡ Pr(ZM = t | et , gt ).

We can easily express pM (t) in terms of the likelihood (4)
and the posterior distribution of βkt given gt . Denoting βt =
{β1t , . . . , βK t}, the vector of probabilities of mismatches at all
K positions of genomic location t, we have

pM (t) ≡ Pr(ZM = t | et , gt )

=
∫

Pr(ZM = t | et , βt )︸ ︷︷ ︸
part 1

f (βt | gt )︸ ︷︷ ︸
part 2

dβt .

The above equation says that the posterior probability pM (t)
equals the integral of part 1 with respect to the posterior
of βt , where part 2 is the posterior distribution of βt given
the observed mismatch profiles for all the unique reads. We
will numerically evaluate this integral by drawing random
samples from the posterior of βt via Markov chain Monte
Carlo (MCMC) simulations, described in Section 2.2. Sup-
pose an MCMC sample is denoted as [β(s)

t , s = 1, . . . , S] for
t = 1 , . . . , T. We apply Bayes’ theorem to part 1 and obtain

part 1 |
βt =β

(s )
t

=
Pr(et | ZM = t, β

(s)
t )

T∑
t ′=1

Pr(et ′ | ZM = t′, β(s)
t )

,

which can be easily evaluated based on (4). Finally, we obtain
an MCMC estimate p̂M (t) given by

p̂M (t) =
1
S

S∑
s=1

part 1 |
βt =β

(s )
t

=
1
S

S∑
s=1

Pr
(
et | ZM = t, β

(s)
t

)
T∑

t ′=1

Pr
(
et ′ | ZM = t′, β(s)

t

) . (6)

2.2 Markov Chain Monte Carlo Simulations
We augment the parameter space (Tanner and Wong, 1987)
and employ a simple Gibbs sampler to simulate random num-
bers from the marginal posterior distributions of the un-
known parameters [βkt ]. The basic idea is to introduce a latent
Bernoulli variable for unique read l with a conditional distri-
bution defined by

ul,k t | βk t ∼ Bern

{
(1 − αl,k t )βk t

αl,k t + (1 − αl,k t )βk t

}
.

Then denote the set Wkt = {l: gl ,kt = 1} the indices of the
unique reads with a mismatch to the kth position of location
t. Denoting uk t =

∑
l∈W k t

ul,k t , with the augmented Bernoulli
distribution we can easily show that [βkt |ukt ] follows a beta
distribution

B

(
uk t + a, nk t −

n k t∑
l=1

gl,k t + b

)
.

Alternating the random sampling of [ul ,kt |βkt ] and [βkt |ukt ] in
a Gibbs sampler, we obtain imputed values of [u(s)

k t , β
(s)
k t ] in the

sth iteration of the Gibbs sampler. We use the MCMC sam-
ples [β(1)

k t , . . . , β
(S )
k t ] to calculate (6) and evaluate the posterior

probability p̂M (t).

The proposed Gibbs sampler is as follows.

• Step 1: Let β
(1)
k t = ε, where ε is an arbitrary small

probability close to zero.
• Step 2: In the sth iteration, sample u

(s)
l ,k t from

Bern

{
(1 − αl,k t )β

(s−1)
k t

αl,k t + (1 − αl,k t )β
(s−1)
k t

}
, l ∈ Wkt .

Compute u
(s)
k t =

∑
l∈W k t

u
(s)
l ,k t .

• Step 3: Sample β
(s)
k t from B(u(s)

k t + a, nk t −∑n k t

l=1 gl,k t + b).
• Step 4: Iterate steps 2 to 3 S number of times, for a

large integer S.

For the special case in which nkt = 0, set u
(s)
k t = 0 and

β
(s)
k t = β

(s−1)
k t .
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In our analysis, the number of iterations S was set to 1000
with the first 200 iterations as burn-in. The Markov chain
converged fast and mixed well.

3. Simulation Studies
We conducted simulation studies to evaluate the performance
of the proposed BM-Map method in comparison with two
other approaches.

3.1 Simulation Setup
As an illustration, we considered multireads potentially
mapped to T = 2 genomic locations. We designed seven sce-
narios with different combinations of three factors that would
affect read mapping: (1) Diff = (Yes; No), defined as whether
there was a true sequence difference between the two genomic
locations in the reference genome; (2) Mut = (Yes, No), de-
fined as whether there was a hidden nucleotide variation (e.g.,
mutation) at a position belonging to one of the two genomic
locations; 3) Exp = (Yes, No), defined as whether the expres-
sion levels, measured as the numbers of mapped unique reads,
between the two genomic locations were the same. Enumera-
tion of the three factors would give us eight scenarios. How-
ever, the scenario in which all three factors were false was
of no interest and did not provide any information about to
where the multireads should be mapped. Hence, that scenario
was not considered in this simulation. When Diff was Yes, we
assumed that there was a sequence difference at position 18
between the two genomic locations. When Mut was Yes, we
assumed that the mutation rate at position 16 of genomic lo-
cation 1 was β16,1 = 0.9; when Mut was No, the rate was 0.
When Exp was Yes, i.e., the expression levels were the same
for the two locations, we assumed that the same number of
unique reads originated from both genomic locations, and the
number could have been 4, 10, or 100. When Exp was No,
we assumed different numbers of unique reads from locations

1 and 2: (4, 3), (10, 5), or (100, 10). Therefore, combining
the three sets of sample sizes for all seven scenarios, we ob-
tained a total of 21 possible simulation cases, see Table 1 in
Web Appendix 1. For each of the cases, we generated 200
multireads with a mismatch probability at the kth position
equal to pkt , m = 1 , . . . , 200, and t = 1, 2, where pkt = αk

+ (1 − αk )βkt . Finally, the values of αk ’s were fixed at the
sample means of the mismatch rates of position k using all
the unique reads in the yeast data. The probability βkt was
0 unless when Mut was true, in which case β16,1 = 0.9. The
first 200 × N1/(N1 + N2) (round to an integer) multireads
were assumed to originate from genomic location 1, where N1

and N2 were the numbers of the unique reads originated from
locations 1 and 2, respectively.

3.2 Simulation Results
We compared three methods for each of the 21 cases in the
simulation studies.

• BM-Map—the proposed Bayesian method.
• Prop—the proportional method (Mortazavi et al., 2008) in

which reads are mapped to the location with the fewest
number of mismatches. When there are ties, the multi-
reads are mapped to each tied location with a probability
proportional to the number of unique reads mapped to
that location.

• Rand—a reference method that assigns the multireads to
each of the genome locations with a uniform probability.

Figure 2 summarizes the false discovery rates (FDRs) for
the three methods after they were applied to the 200 simu-
lated multireads originated from two genomic locations. Here,
the FDR is defined as the percentage of multireads being
falsely mapped to a genomic location among all the multi-
reads mapped to that location. The left panel presents the
stacked 21 FDRs for mapping the multireads to genomic

Figure 2. Results summarizing the false discovery rates (FDRs) of the three methods in the simulation studies. Left panel:
stacked FDRs over the 21 simulated cases in Section 3.1. A method name followed by “−1” and “−2” respectively represents
the stacked 21 FDRs for mapping multireads to locations 1 and 2. Right panel: FDRs for selected simulation cases in which
there are large differences in the FDRs among the three methods. This figure appears in color in the electronic version of this
article.
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locations 1 and 2 under each of the three methods. The lower
the bar, the better the overall performance. The BM-Map
method has much lower bars than both the Prop and Rand.
The right panel shows the FDRs of a list of representative
cases (4,5,6,7,8,9,16,17,21). In other cases, the BM-Map and
Prop methods performed equally well. For each presented case
in the right panel, the six vertical bars represent the FDRs
of the three methods, with the first three bars for location 1
and the next three for location 2. Almost in all the cases,
the BM-Map has much smaller FDRs than the other two
methods. Highlighted is case 21, in which all three factors are
true with the numbers of unique reads being 100 and 10 for
the two genomic locations. While the BM-Map has an FDR
(0.01) at genomic location 1 comparable to that of the Prop
(0.00), it has a much smaller FDR at genomic location 2 (0.06
vs. 0.32). Further examination shows that the Prop method
mapped many multireads to location 2 that belonged to loca-
tion 1. This is due to the fact that when there is a mismatch
between a read and the location 1 at the 16th position, the
Prop method could not tell whether the mismatch was due
to mutation or sequence difference. Because there was a high
mutation rate 0.9 (β16,1 = 0.9), most mismatches between the
multireads and the location 1 at this position were due to the
mutation. The BM-Map was able to learn and borrow the in-
formation based on the mismatch profiles of the unique reads,
and thus correctly map most of the multireads.

In Figure 4 of Web Appendix 1, we present additional re-
sults comparing the ROC curves and the areas under the
curves, which further confirm the superiority of the BM-Map
method.

4. RNA-Seq Data Analysis
We present results for the analysis of the yeast and human
RNA-Seq data described in Section 1.2. We will again fo-
cus on the yeast data for illustrative purposes. Results from
human data analysis will be reported whenever needed as a
complement.

4.1 Read Mapping
In mapping the multireads to the yeast or human genome, we
first identified the genomic locations with the fewest number
of mismatches as the top hits. We required that the number
of mismatches between the best hits and the short read be no
larger than two. Additional hits are included according to the
three criteria listed in Section 1.2. For the yeast data, there are
a total of 5,256,339 unique reads. The numbers of multireads
with 2 to 5 hits are respectively (1,494,678, 147,142, 12,079,
2,495). For the human data, there are a total of 4,237,908
unique reads, and the numbers of multireads with 2 to 5 hits
are (652,577, 355,109, 197,189, 144,601).

We applied the BM-Map method to map the multireads.
For each multiread, we first identified the set of unique reads
for each of its candidate genomic locations. Matching the
sequences of the multiread to its candidate genomic loca-
tions, we obtained the mismatch profiles [e1, . . . , eT ]. Match-
ing the sequences of the unique reads and their correspond-
ing genomic locations, we obtained the mismatch profiles
[g1, . . . , gT ]. With these profiles, for each multiread indexed
by m, we applied the Gibbs sampler outlined in Section 2 and
computed the posterior probabilities that the multiread m is
mapped to location t, p̂m (t) (this was p̂M (t) before without

Figure 3. Histogram of the differences in mapping the mul-
tireads of the yeast RNA-Seq data between the BM-Map
method and the Prop method.

the index m). These probabilities are used to compute gene
expression in downstream analyses.

For comparison, we applied the proportional method (Mor-
tazavi et al., 2008) to map the multireads as well. Let n.loci
∈ {2, 3, 4, 5} be the number of hits for a multiread. Let r̂m (t)
denote the probability of mapping multiread m to location
t using the proportional method. For each multiread m with
n.loci candidates, we compute the difference in the probabil-
ities of read mapping between the BM-Map method and the
proportional method as

Dm (p, r) ≡
n .loc i−1∑

t=1

|p̂m (t) − r̂m (t)|.

For example, for a multiread with n.loci = 2 hits, the propor-
tional method might yield r̂m (1) = 0.6 and r̂m (2) = 0.4 while
the BM-Map method might yield p̂m (1) = 0.3 and p̂m (2) =
0.7; we would have Dm(p, r) = |0.6 − 0.3| = 0.3. Figure 3
presents the histogram of the log Dm(p, r) for those multi-

reads in the yeast data with at least one unique read mapped
to each hit, when n.loci = 2. Figure 4 demonstrates three rep-
resentative examples of mapping multireads, again from the
yeast data. The left two columns demonstrate cases in which
the BM-Map and proportional methods gave contrasting re-
sults, mapping the multireads to opposing genomic locations.
The right column is an example in which the two methods
agree. In each plot, we present the posterior mean of βkt , the
probability of a hidden nucleotide variation for the kth posi-
tion at genomic location t, as a function of k. A large posterior
mean of βkt implies that a large number of unique reads have
mismatches at the kth position of location t, which are due
to hidden nucleotide variations. We present these important
phenomena in Figure 4.
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Figure 4. Three examples of multireads mapped to two hits based on the probabilities of the BM-Map and Prop methods. In
each column, the two plots (rows) correspond to two competing genomic locations for a multiread. Plotted are the posterior
means of βkt , the probability of hidden nucleotide variation. These are estimated based on the error mismatch profiles between
the unique reads and the genomic locations. The vertical lines ended with empty triangles indicate where the multireads have
mismatches. Left panel: the multiread has mismatches at positions (23, 24) to location 1 and (12, 13) to location 2. Middle
panel: the multiread has mismatches at positions (7, 22) to location 1 and (34, 35) to location 2. Right panel: the multiread
has mismatches at positions (1, 12) to both locations. The probabilities of mapping based on the BM-Map and proportional
methods are presented in each plot.

• [Left Panel] If a hit has a high probability of a hidden
nucleotide variation at a position where the multiread
has a mismatch, the mismatch will be down-weighted be-
cause it could be caused by a mutation. Consequently,
the probability of mapping the multiread to that hit will
increase due to improved matching. This is the case for
the left plot in the top panel (high β24,1).

• [Middle Panel] In contrast, if a hit has a high prob-
ability of a hidden nucleotide variation at a position
where the multiread has a perfect match, the perfect
match will be down-weighted and the probability of map-

ping the multiread to that hit will decrease. This is the
case for the right plot in the top panel (high β15,1 and
β16,1) and the left plot in the middle panel (high β2,1

and β3,1).
• [Right Panel] The bottom panel in Figure 4 presents a

“null” case in which the BM-Map method and the pro-
portional method give the same mapping probabilities.
In both plots, the probabilities of hidden nucleotide vari-
ations are negligible at all positions of both genomic lo-
cations. Therefore the probability of mapping the multi-
read is based on the numbers of mismatches between the
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multiread and the locations, and the number of unique
reads on each location.

In summary, the first two examples above highlight the
importance of borrowing the matching information between
the unique reads and the genomic locations in refining
the mapping of the multireads. This is a key advantage
of the BM-Map method comparing over the proportional
method.

4.2 Gene Expression Quantification
The final goal in processing the RNA-Seq data is to quantify
gene expression. A fast and easy quantification is simply to
count the number of reads that are mapped to the gene. In
the yeast data there are 5862 genes and we obtained 5862
counts for each of the three methods. We compare three read
mapping approaches: the BM-Map method, the proportional
method, and the naive method that simply discards all the
multireads in computing the counts. For a fair comparison,
we present the normalized counts for the three methods in
Figure 5. For the proportional and the BM-Map methods,
the normalized count for each gene is defined as the count
of reads mapped to the gene divided by the total number
of reads (per million). For the naive method, since it only
uses the unique reads, the total number of reads is the total
number of unique reads. The definition of the normalized read
count remains the same. For simplicity, we call the normalized
counts the counts.

In Figure 5 top left panel, the counts of over 40% of the
genes from the BM-Map method are different from those from
the naive method, because the naive method ignores the mul-
tireads when quantifying the read counts. The proportional
method and the BM-Map method yield identical counts for
5049 genes of the 5813 yeast genes with non-zero counts from
both methods. This is because for most of the 5049 yeast
genes, there are no multireads. However, when there are mul-
tireads mapped to the genes, the two methods can be very dif-
ferent (top right panel). In the analysis for the human data,
∼ 10% of the genes have different read counts between the
proportional method and the BM-Map approach (Figure 5
bottom panel). We also summarized gene quantification as
the number of reads that map per kilobase of exon model
per million mapped reads (RPKM). See Web Appendix 1 for
more results.

In our BM-Map method, βkt is designed to quantify the
uncertainty due to the variations between the sample and
reference genomes (e.g., SNP). Since the human data set is
known to come from one Yoruba HapMap sample (Pickrell et
al. 2010), we obtained the common SNP data of the Yoruba
population from the 1000 Genome project and investigated
the relation between βkt and the annotated SNP frequency.
Indeed, we found a convincing trend of SNP enrichment to-
ward positions with higher βkt . For example, for positions
with βk t > 0.2, the SNP frequency is ∼70-fold higher than
the transcriptome-wide average.

As a further evaluation of the impact of the BM-Map
method on gene expression quantification, we present in Ta-
ble 1 the normalized differences between the read counts from

Figure 5. Results comparing the normalized counts from
three methods. Shown are the log absolute differences in
the normalized counts between the BM-Map and the Naive
method (left panel) and between the BM-Map and the pro-
portional method (right panel) for the yeast data (top) and
the human data (bottom).

the BM-Map method and the proportional method, defined
as

| Countprop − CountBM−Map |
CountBM−Map

.

Table 1 shows that the counts of some genes based on the BM-
Map method differ with that from the proportional method
by more than 50%.
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Table 1
A representative list of yeast and human genes whose expression levels show significant variation between the BM-Map method
and the proportional method. All 10 genes listed below are duplicate genes, hence possessing sequences similar to other genes.

They all play important biological functions.

Yeast genes

ORF name Gene name Protein product description Expression diff %

YLR134W PDC5 Pyruvate deCarboxylase 37.5%
YPL036W PMA2 Plasma membrane ATPase 24.6%
YMR121C RPL15B Ribosomal protein of the large subunit 21.2%
YJL052W TDH1 Triose-phosphate deHydrogenase 20.9%
YPL081W RPS9A Ribosomal protein of the small subunit 11.1%

Human genes

Gene name Protein product description Expression diff %

RPL13 Ribosomal L13 83.7%
HAUS1 HAUS augmin-like complex, subunit 1 54.8%
H3F3C H3 histone, family 3C 41.1%
NDUFAF2 NADH dehydrogenase 1 alpha subcomplex, assembly factor 2 41.1%
HIGD1A HIG1 hypoxia inducible domain family, member 1A 34.9%

5. Discussion
We have proposed a read mapping method that utilizes the
full information contained in NGS data. Specifically, the pro-
posed BM-Map method maps the multireads by taking into
account the sequencing error profiles and the information re-
lated to the mapping of unique reads. The Bayesian paradigm
works very well and yields desirable results in our simulation
studies and the analysis of yeast and human RNA-Seq data.

Computation is a challenging for analyzing NGS data with
millions of short reads. We have achieved a remarkably fast
speed in computation, thanks to efficient C++ programming.
The C++ source code and a package is available for download
at http://odin.mdacc.tmc.edu/∼ylji.

We are in the process of releasing user-friendly software, to
facilitate the use of the C++ package above. For the 6.9 million
of mapped short reads (with ∼ 1.6 million multireads) from
the yeast genome, it took the package about 5.5 hours to
complete the computation on a PC (Intel Core i7 2.9 GHz),
requiring <2 GB of memory.

Although not many genes in the examples were found to
have different counts between the BM-Map and proportion
methods through our RNA-Seq analysis, we show in Table 1
that the ones that did exhibit differences play crucial bio-
logical functions. In addition, through careful examination
of our analysis results we found that our method shows sig-
nificant improvements when hidden nucleotide variations are
present in the competing mapping loci. Therefore, the pro-
posed methodology is expected to have a larger effect in
the species with high polymorphism frequencies or in cross-
reference situations where RNA-Seq reads from one species
without available genome sequence are mapped to the genome
of a closely related species as a surrogate reference. In addi-
tion, as pointed out in Degner et al. (2009), our approach
would help better quantify allele-specific gene expression, es-
pecially when SNP alleles are present.

Finally, we would like to point out that although our study
is primarily based on RNA-Seq data, the proposed Bayesian

framework can be easily extend to other NGS applications
such as DNA-resequencing and Chip-Seq.

6. Supplementary Materials
Web Appendices, Tables, and Figures referenced in Sections
1, 2, 3, 4 are available under the Paper Information link at the
Biometrics website http://www.biometrics.tibs.org.
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