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A: Main idea of the BM-Map

As stated in the main text, the key idea is to borrow information stored in the unique

reads to estimate the model parameters. We utilize three sources of information when

mapping the multireads, the sequencing mismatch profiles, the likelihood of hidden

nucleotide variations, and the expression levels of competing genomic locations. See

Figure 1.

For a multiread that can be aligned to multiple genomic locations, the set of unique

reads are defined as those with the starting or ending base falling in-between the range

of the genomic location. See Figure 2.
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B: Sequencing error rates αkt and αl,kt

There are two options for estimating the values of α’s in the Bayesian model. First,

we can compute the observed position-specific error rates using all the unique reads.

The 35 sample proportions are summarized in left panel of Figure 3. This option was

used for the simulation studies in the main text.

Alternatively, individual quality scores are assigned to the bases of the mapped

reads. We can compute a sample mismatch proportion for each of the quality scores.

In the yeast RNA-Seq data, there are a total of 41 different quality scores. The right

panel plots the sample mismatch proportion for each of the 41 quality scores using all

the unique reads in the yeast genome data.

In our RNA-Seq data analysis, we used the values in the right panel as αl,kt ≡ αl,Qkt,

where Qk ∈ {1, . . . , 41} is the quality score of the base (of unique read l) matched with

the k-th position of location t.

C: Additional simulation setup

Table 1 presents the 21 simulations described in the simulation setup of the original

paper.

D: Additional simulation results – ROC

Figure 4 presents 21 ROC curves along with the areas under the curve (AUC) for all

the three methods in the simulation. The BM-Map is superior than the other two

methods under comparison.
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E: RPKM as gene expression

In the paper, we used read counts to quantify gene expression. An alternative approach

is to compute the number of reads that map per kilobase of exon model per million

mapped reads (RPKM). A larger RPKM indicates larger gene expression. A standard

algorithm for computing the RPKM is given below. We compare the RPKMs based

on three read mapping approaches: the BM-Map method, the proportional method,

and the industry standard. Most practitioners simply discard all the multireads in

computing the RPKM. We call this the naive method. In the BM-Map and proportional

methods, we use the probabilities of mapping a multiread to each genomic location as

the count number in the first step of computing the RPKM.

Algorithm for computing the RPKM:

1. Count the number of reads (multireads and unique reads) mapped to the genes

in millions. Call that number m.

2. Count the number of bases in all the exons of the gene in kilo-bases. Call that

number l.

3. Count the total number of reads that have been mapped to the entire genome

in millions. Call that number t.

4. RPKM = m/l/t.

We get one RPKM value per gene. In the BM-Map and proportional methods,

we use the probabilities of mapping a multiread to each genomic location as

the count number in the first step.
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There are 5,862 known yeast genes, which result in 5,862 RPKMs for each of the

three methods. Figure 5 compares the pairwise RPKMs among the three methods for

both the yeast data and human data.
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Table 1: The proposed 21 simulation cases with different configurations of sequence
difference (Diff), hidden nucleotide variation (Mut), and imbalanced expression (Exp).
There are a total of seven configurations of Diff, Mut, and Exp, for each of three sample
sizes (see Section 3.1 of the main text).

Case Sequence difference Hidden nucleotide variation Imbalanced expression
Index (Diff) variation (Mut) (Exp)
1-3 Yes No No
4-6 No Yes No
7-9 No No Yes

10-12 Yes No Yes
13-15 Yes Yes No
16-18 No Yes Yes
19-21 Yes Yes Yes

Figure 1: (Colored) An illustration of the three sources of information used in the
BM-Map method. (1) The short read may be sequenced with errors; (2) One genomic
location may have a larger expression than the other (Locus B has more unique reads
than locus A); (3) The competing genomic locations may have different sequences due
to hidden nucleotide variation (boxed C in the locus B).
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Figure 2: (Colored) For a given location spanning from position 101 to 135, any unique
reads with starting base or ending base ∈ [101, 135] will be included in our analysis.
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Figure 3: Observed sequencing error rates as a function of the base number (left panel)
or quality score (right panel) using the unique reads from the yeast data set.
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Figure 4: (Colored) The ROC curves and resulting area under the curve (AUC) for
the three methods under comparison in the simulation. The three rows of ROC plots
correspond to the scenarios 13-15, 16-18, and 19-21 in Table 1 of the manuscript. The
sample sizes (number of unique reads) in each scenario is on top of each ROC plot.
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Yeast data
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Human data
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Figure 5: Results comparing the RPKMs from three methods. Shown are the log
absolute differences in the RPKMs between the BM-Map and the Naive method (left
panel) and between the BM-Map and the proportional method (right panel) for the
yeast data (top) and the human data (bottom).
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