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Lecture 20: Classification I

• Clustering and Classification

• Classification Methods

• LDA, DLDA, QDA

• KNN

• Validation

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



INTRODUCTION TO MICROARRAYS 2

Discovery and Prediction

Class Discovery is most closely associated with
clustering; we are using structure inherent in the data
to suggest groupings of interest.

Class Prediction, by contrast, is most closely
associated with classification. Here, we start with a
few samples from each of a few classes known to be
of interest a priori, and try to allocate new
observations to these classes.
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How Classification Works

In general, the first step in classification with
microarrays is to select a subset of genes to work
with, since the entire set can be problematic.

Given a set of features, various methods are then
used to divide up the space of possible values into
regions that are “class 1”, “class 2” and so on.
Typically, these regions will be divided by smooth
curves defining a “decision boundary”.

Smooth boundaries have the advantage that they can
suggest some biology.
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Some Classification Methods

Linear Discriminant Analysis (LDA, aka Fisher’s LDA)

Quadratic Discriminant Analysis (QDA)

Diagonal Linear Discriminant Analysis (DLDA)

Classification and Regression Trees (CART)

k Nearest Neighbors (KNN)

Support Vector Machines (SVM)
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A Data Set

Assessing the importance of BRCA1 and BRCA2
mutations in breast cancer. Initially introduced in
Hedenfalk et al (2001), and filtered a bit in Simon et al
(2003).

texttt http://linus.nci.nih.gov/BRB-ArrayTools.html

under “Book” and “BRCA”.

Log ratio measurements on 3226 genes for 22 breast
tumors, 7 with BRCA mutations and 8 with BRCA2
mutations.

Focus on dividing BRCA2 status groups.
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Choosing a Subset of Genes

Most commonly, we pick those that show good
univariate performance at separating the groups of
interest, either by t-tests or Wilcoxon tests (2 groups)
or ANOVA or Kruskal-Wallis tests (3 or more groups).
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Choosing a Subset of Genes

Most commonly, we pick those that show good
univariate performance at separating the groups of
interest, either by t-tests or Wilcoxon tests (2 groups)
or ANOVA or Kruskal-Wallis tests (3 or more groups).

This makes a pretty strong assumption that there will
not be any really useful interaction effects in the
absence of important information from the individual
components.
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What we got Here

Here, we used pooled two-sample t-tests to contrast
the 8 BRCA2 samples with the 14 others, and chose
to focus on just the ones that had a p-value < 0.001
(there are 49 of these).
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Telling Groups Apart

In telling two groups apart, a natural starting point is to
use as simple a rule as possible – drawing a straight
line, mapping every observation down onto that line,
and cutting the line at some central point.

Conversely, we can think of this as taking the space
and using a sheet to cut it in half – everything on the
left side of the sheet will be classed in group 1, and
everything on the right will be classed in group 2. This
is a simple decision boundary.

So, how do we choose the best line to use?

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



INTRODUCTION TO MICROARRAYS 9

Fisher’s Linear Discriminant Analysis

In 1d, the problem is pretty straightforward – we find
the two group means and place our cut precisely at
the midpoint.
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Fisher’s Linear Discriminant Analysis

In 1d, the problem is pretty straightforward – we find
the two group means and place our cut precisely at
the midpoint.

In 2d, this is still partially true – the optimal line to use
is the one that connects the two group means, and the
cut point is still at the middle. The question is one of
how to map points in the plane down onto this line.
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A Simple Example

Say that the two groups have centers at (1,1) and
(2,2), and that the variances are the same on the two
axes. Then

the line joining the two is y = x,

the center point is (1.5,1.5),

and the best separating plane is orthogonal to the
connecting line and passes through the center –
y = 3− x.
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Simple Classification 1

Looks pretty easy...
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Fisher’s Linear Discriminant Analysis

Now say that something got screwed up, and the
measurements on the x axis were sent in mm as
opposed to m.

The centers are now (1000,1) and (2000,2), the
central cut point is now (1500,1.5), and the connecting
line is y = x/1000.

The optimal separating plane, however, is not
orthogonal to this line.

If it were, the line would be y = 1500001.5− 1000x.
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Fisher’s Linear Discriminant Analysis

But all I did was stretch the x-axis from what it was
before; the optimal separator should also stretch.

Since this separator hit the y axis at 3 before the
stretch, it should still do so after. Thus, the new “best
line” is y = 3− x/1000.
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Fisher’s Linear Discriminant Analysis

But all I did was stretch the x-axis from what it was
before; the optimal separator should also stretch.

Since this separator hit the y axis at 3 before the
stretch, it should still do so after. Thus, the new “best
line” is y = 3− x/1000.

The optimal separating line should not change if we
simply change our measuring units, so we need a
method that is scale-invariant.
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Simple Classification 2

Hmm.
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Extending the t test

The t test is scale-invariant:

x̄1 − x̄2

sp

√
1
n1

+ 1
n2

as is its square

(x̄1 − x̄2)
{

s2
p(

1
n1

+
1
n2

)
}−1

(x̄1 − x̄2).

So we need to extend this by standardizing the data in
general.
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The Extension

Let

W = (x̄1 − x̄2)S−1
{

x− 1
2
(x̄1 + x̄2)

}
.

If W > 0, then x belongs to group 1, else it belongs to
group 2.

We have the dividing line, a squashing of the space to
standardize things, and a measurement along this line.
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Some R Code

library(’MASS’);

ds1 <- matrix(rnorm(40),20,2) + 1;
ds2 <- matrix(rnorm(40),20,2) + 2;

my.lda <- lda(rbind(ds1,ds2),grouping=
as.factor(c(rep(1,20),rep(2,20))))

my.predictions <- predict(my.lda,
rbind(ds1,ds2));
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Does this Work?

Well, it certainly did for the problems Fisher used it for
back in 1936. For microarray data, however, there can
be some problems.
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Does this Work?

Well, it certainly did for the problems Fisher used it for
back in 1936. For microarray data, however, there can
be some problems.

Specifically, in order to use linear discriminant
analysis, we need to compute the inverse of the
sample covariance matrix, and if we have k variables
that means that we are estimating k(k + 1)/2 different
variances, in addition to k means. That’s a lot, and can
get unstable if k2 is an appreciable fraction of the total
number of samples.
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Does it Work Here?

Here, when we began, n = 22 and k = 49. Whoops.
Inverting the matrix will not work at all; we have to
restrict our attention to a smaller number of features
(say 5).
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Fixum Addum Hoccum

What if we don’t use the entire covariance matrix, but
rather just the main diagonal?
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Fixum Addum Hoccum

What if we don’t use the entire covariance matrix, but
rather just the main diagonal?

This is much better behaved for microarray data.

This approach is known as Diagonal Linear
Discriminant Analysis (DLDA).

c© Copyright 2004, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



INTRODUCTION TO MICROARRAYS 21

More R Code

d1bar <- apply(ds1,2,mean);
d2bar <- apply(ds2,2,mean);
d1var <- apply(ds1,2,var);
d2var <- apply(ds2,2,var);
dvar <- ((20-1)*d1var +

(20-1)*d2var)/38;

W <- (d1bar - d2bar) %*%
diag(dvar) %*%
t(t(rbind(ds1,ds2)) -

(d1bar + d2bar)/2);
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Further Extensions

So far, we’ve used means and covariance matrices,
but we’ve assumed that the covariances are the same
for the two groups.

If we assume that the two groups are both normally
distributed, but that the two covariance matrices can
be different, then the contours that get drawn result
from drawing concentric ellipsoids about the two group
centers, and the decision boundary can be curved.
This is known as Quadratic Discriminant Analysis
(QDA).
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And More R Code

library(’MASS’);

ds1 <- matrix(rnorm(40),20,2) + 1;
ds2 <- matrix(rnorm(40),20,2) + 2;

my.qda <- qda(rbind(ds1,ds2),grouping=
as.factor(c(rep(1,20),rep(2,20))))

my.predictions <- predict(my.qda,
rbind(ds1,ds2));
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Back away from the Covariance Matrix

and nobody will get hurt. Easy now...
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Back away from the Covariance Matrix

and nobody will get hurt. Easy now...

The discriminant methods that we have described so
far are focused on mean or central behavior.

We can also carry over some ideas from the
clustering/linkage realm, and decide to classify a new
sample on the basis of the classification that holds for
the known samples closest to it. If we look at the k

nearest neighbors (KNN), then the sample is classified
according to majority vote amongst the k.
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Something Odd about the Neighbors..

KNN is most explicitly defined in terms of both training
and test sets. It is very rarely discussed solely in terms
of the training sets which allow us to partition the
space into “group 1 regions” and “group 2 regions”.

This can be more flexible, and can produce some odd
decision boundaries (a mixed blessing).
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And More R Code

library(’class’);

ds1 <- matrix(rnorm(40),20,2) + 1;
ds2 <- matrix(rnorm(40),20,2) + 2;

my.knn <- knn(
train = rbind(ds1[1:10,],ds2[1:10,]),
test = rbind(ds1[11:20,],ds2[11:20,]),
k = 1,
cl = as.factor(c(rep(1,20),rep(2,20))))
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How Good is the Rule?

How well does it classify the data?
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How Good is the Rule?

How well does it classify the data?

Is this a valid test of the classifier?

Probably not. If the data to be predicted is used to
train the classifier in the first place, then our results will
look better than they should. This is the problem of
“overfitting” the data.
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Our Task

We need to think of a way to assess the prediction
accuracy of the rule using samples that the rule hasn’t
seen.

So, where will these samples come from?
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Cross-Validation

We can make use of the samples we have by using
only some of them to fit the model, and then predicting
the status of the one(s) we haven’t seen.

We’re going to do this in stages, working first in a
context where there should be nothing going on to try
to highlight the important issues a bit more clearly.
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Working with Noise

# start with the null matrix
nothing.here <- matrix(rnorm(20000),

1000,20);

# Pick the best 5 t-test "genes"
ds1 <- nothing.here[,1:10];
ds2 <- nothing.here[,11:20];
mu1 <- apply(ds1,1,mean);
mu2 <- apply(ds2,1,mean);
var1 <- apply(ds1,1,var);
var2 <- apply(ds2,1,var);
varpool <- ((10-1)*var1+(10-1)*var2)/18;
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Fitting the Best

nothing.t <- (mu1 - mu2) /
sqrt(varpool * (1/10 + 1/10));

nothing.ranks <- rank(abs(nothing.t));
nothing.best5 <-

nothing.here[nothing.ranks > 995,];

# Use LDA to separate the data and to
# predict the status of the 20 samples.
nothing.lda1 <- lda(t(nothing.best5),

grouping=as.factor(
c(rep(1,10),rep(2,10))));
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Counting Successes

nothing.predictions1 <- predict(
nothing.lda1,t(nothing.best5));

nothing.right1 <- sum(
nothing.predictions1$class[1:10] == 1) +

sum(
nothing.predictions1$class[11:20] == 2);

Here, we got 20 right. That looks a bit too good. How
are we overfitting?
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Leaving one Out

# Next, use cross-validation with the 5
# genes chosen above to fit the divider
# on 19, and to predict the status of
# the last one.

groupvec <- as.factor(c(rep(1,10),
rep(2,10)));

predvec <- rep(0,20);
for(i1 in 1:20){

nothing.lda2 <- lda(
t(nothing.best5[,-i1]),
grouping=groupvec[-i1]);
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Making the Predictions

nothing.predictions2 <- predict(
nothing.lda2,t(nothing.best5[,i1]));
predvec[i1] <-

nothing.predictions2$class;
}
nothing.right2 <-

sum(predvec[1:10] == 1) +
sum(predvec[11:20] == 2);
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Making the Predictions

nothing.predictions2 <- predict(
nothing.lda2,t(nothing.best5[,i1]));
predvec[i1] <-

nothing.predictions2$class;
}
nothing.right2 <-

sum(predvec[1:10] == 1) +
sum(predvec[11:20] == 2);

Doing this, we get 17 right. Still a bit high. How are we
overfitting?
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Refitting Everything I

# Next, use cross-validation by using
# 19 samples, defining the 5 best on
# the basis of those 19, and then
# predicting the status of the last case.

predvec3 <- rep(0,20);
for(i1 in 1:10){

mu1 <- apply(ds1[,-i1],1,mean);
mu2 <- apply(ds2,1,mean);

Refit the selection of the 5 genes to be used!
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Refitting Everything II

var1 <- apply(ds1[,-i1],1,var);
var2 <- apply(ds2,1,var);
varpool <- ((9-1)*var1 + (10-1)*var2)/17;

nothing.t <- (mu1 - mu2) /
sqrt(varpool * (1/9 + 1/10));

nothing.ranks <- rank(abs(nothing.t));
nothing.best5 <- nothing.here[

nothing.ranks > 995,];
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Refitting Everything III

nothing.lda3 <- lda(
t(nothing.best5[,-i1]),
grouping=groupvec[-i1]);

nothing.predictions3 <- predict(
nothing.lda3,t(nothing.best5[,i1]));

predvec3[i1] <-
nothing.predictions3$class;

}



INTRODUCTION TO MICROARRAYS 37

Refitting Everything III

nothing.lda3 <- lda(
t(nothing.best5[,-i1]),
grouping=groupvec[-i1]);

nothing.predictions3 <- predict(
nothing.lda3,t(nothing.best5[,i1]));

predvec3[i1] <-
nothing.predictions3$class;

}

Here, we get 6 right.
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Is This Consistent?

nothing.right1: 20,20,20,etc

nothing.right2: 17,18,20,etc

nothing.right3: 6,12,8,etc
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