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INTRODUCTION TO MICROARRAYS 1

Lecture 5: R, Objects and Affymetrix Arrays

• R Data Structures

• Bioconductor Packages

• Microarray Data Structures

• Affymetrix Data in BioConductor

• Processing Affymetrix data

• Quantification = summarization

• More about reading Affymetrix data
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R Data Structures

We’ve seen that R has a bunch of useful functions, and we can
see how these would have helped S (and then R) to catch on.
But there was more; we remarked on how S allowed one to think
about data in a more coherent fashion. Let’s think about that a bit
more.

Consider x . Initially, this symbol has no meaning; we must assign
something to it.

x <- 2

In the process of assignment, we have created an object with the
name of x . This object has the value 2, but there are other things
about objects: they have properties, or attributes.
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Some Basic Attributes

> mode(x)
‘‘numeric’’
> storage.mode(x)
‘‘double’’
> length(x)
[1] 1

These are attributes that x has by default, but we can give it
others.
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What’s In A Name?

Initially, nothing:

> names(x)
NULL

but we can change this

> names(x) <- c(‘‘A’’)
> x
A
2

This element of x now has a name! If something has a name, we
can call it by name.
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Calling Names

> x[1]
A
2
> x[‘‘A’’]
A
2

Admittedly, this isn’t that exciting here, but it can get more
interesting if things get bigger and the names are chosen in a
more enlightening fashion.

Let’s assign a matrix of values to x , and see if we can make the
points clearer.

So, how do we assign a matrix? Well, there may be a function
called matrix. Let’s find out.
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Matrix X: TMTOWTDI!

There’s more than one way to do it...

> help(matrix)

Usage
matrix(data = NA, nrow = 1, ncol = 1,

byrow = FALSE, dimnames = NULL)

even the arguments to the function have names!

Arguments to a function can be supplied by position, or by name.
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Matrix X: TMTOWTDI!

We’re going to assign the numbers 1 through 12. That means we
need to get these numbers. Some ways to do that:

> 1:12
> c(1:12)
> c(1:6, c(7:12))
> 1:12.5
> seq(from=1, to=12, by=1)
> seq(1, 12, 1)
> seq(1, 12)
> seq(by=1, to=12, from=1)
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Matrix X: TMTOWTDI!

> x <- matrix(1:12,3,4)
> x <- matrix(data = 1:12, nrow = 3, ncol = 4)
> x

[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

The numbers in brackets suggest how things should be referred
to now:

> x[2,3]
[1] 8
> x[2,]
[1] 2 5 8 11
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Matrix X: TMTOWTDI!

> x[,3]
[1] 7 8 9
> x[3,1:2]
[1] 3 6
> x[3,c(1,4)]
[1] 3 12
> x[2, x[2,] > 6]
[1] 8 11

But what about names?
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Naming x

> rownames(x)
NULL
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Naming x

> rownames(x)
NULL

> rownames(x) <- c("Gene1","Gene2","Gene3")
> x

[,1] [,2] [,3] [,4]
Gene1 1 4 7 10
Gene2 2 5 8 11
Gene3 3 6 9 12
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Naming x

> colnames(x) <- c("N01","N02","T01","T02")
> x

N01 N02 T01 T02
Gene1 1 4 7 10
Gene2 2 5 8 11
Gene3 3 6 9 12

One more thing – names can be inherited!
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Naming x

> colnames(x) <- c("N01","N02","T01","T02")
> x

N01 N02 T01 T02
Gene1 1 4 7 10
Gene2 2 5 8 11
Gene3 3 6 9 12

One more thing – names can be inherited!

> x[‘‘Gene2’’,]
N01 N02 T01 T02

Gene2 2 5 8 11
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On Beyond Matrices

Ok, we’ve gone from scalar to vector to matrix, attaching names
as we go, with the goal of keeping associated information
together. So far, we’ve done this with numbers, but we could use
character strings instead:

> letters[1:3]
‘‘a’’ ‘‘b’’ ‘‘c’’
> x <- letters[1];
> x <- letters[1:3];
> x <- matrix(letters[1:12],3,4);

but we can’t easily mix data of different modes

> x <- c(1,’’a’’);
> x
‘‘1’’ ‘‘a’’
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Mixing Modes in Lists

In R, a list can have components that are of different modes and
even different sizes:

x <- list(teacher=’’Keith’’,n_students=14,
grades=letters[c(1:4,6)])

x
$teacher
[1] ‘‘Keith’’
$n_students
[1] 14
$grades
[1] ‘‘a’’ ‘‘b’’ ‘‘c’’ ‘‘d’’ ‘‘f’’

Note that we named the components of the list at the same time
that we created it. Many functions in R return answers as lists.
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Extracting Items From Lists

If we want to access the first element of x, we might try using the
index or the name in single brackets:

> x[1]
$teacher
[1] ‘‘Keith’’
> x[‘‘teacher’’]
$teacher
[1] ‘‘Keith’’

These don’t quite work. The single bracket extracts a component,
but keeps the same mode; what we have here is a list of length 1
as opposed to a character string. Two brackets, on the other
hand...
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Extracting Items From Lists

> x[[1]]
[1] ‘‘Keith’’
> x[[‘‘teacher’’]]
[1] ‘‘Keith’’

The double bracket notation can be rather cumbersome, so there
is a shorthand notation involving the dollar sign:

> x$teacher
[1] ‘‘Keith’’

This method has the advantage that using names keeps the
goals clear.
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Lists with Structure

Now, there are some very common types of structured arrays.
The most common is simply a table, where the rows correspond
to individuals and the columns correspond to various types of
information (potentially of multiple modes). Because we want to
allow for multiple modes, we can construct a table as a list, but
this list has a constraint imposed on it – all of its components
must be of the same length. This is similar in structure to the idea
of a matrix that allows for multiple modes. This structure is built
into R as a data frame .

This structure is important for data import.
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Reading Data Into R

While we can simply type stuff in, or use source() to pull in
small amounts of data we’ve typed into a file, what we really want
to do is to read a big table of data. R has several functions that
allow us to do this, including read.table() , read.delim() ,
and scan() .

We can experiment by using some of the files that we generated
in dChip for the first HWK.

We could load the sample info file, and the list of filtered genes.
Then we could use the sample info values to suggest how to
contrast the expression values in the filtered gene table. Let’s try
this.
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Importing our dChip Data

I exported all of the dChip quantifications to a single file. The file
has a header row, with columns labeled “probe set”, “gene”,
“Accession”, “LocusLink”, “Description” and then “N01” and so
on, 1 column per sample. We can read this into R as follows:

> singh_dchip_data <-
read.delim(c("../SinghProstate/Singh_’’,

‘‘Prostate_dchip_expression.xls"));
> class(singh_dchip_data)
[1] "data.frame"
> dim(singh_dchip_data)
[1] 12625 108

The number of columns is a bit odd...
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More on Importing

If we invoke help(read.delim) , help pops up for
read.table . The former is a special case of the latter. Let’s
take a look at bits of the usage lines for each:

read.table(file, header = FALSE, sep = "", quote = "\"’", dec = ".",
row.names, col.names, as.is = FALSE, na.strings = "NA",
colClasses = NA, nrows = -1,
skip = 0, check.names = TRUE, fill = !blank.lines.skip,
strip.white = FALSE, blank.lines.skip = TRUE,
comment.char = "#")

read.delim(file, header = TRUE, sep = "\t", quote=
"\"", dec=".", fill = TRUE, ...)

Note the default function arguments!
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Speeding Up Import

Reading the documentation suggests a few speedups:

• we can use comment.char = ””, speeding things up

• we can use nrows = 12626, for better memory usage

• we could shift to using scan() (use help!).

singh_dchip_data <-
read.delim(c("../SinghProstate/Singh_Prostate’’

,’’_dchip_expression.xls")
, comment.char = ""
, nrows = 12626

);

is indeed faster!

c© Copyright 2004, 2005 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



INTRODUCTION TO MICROARRAYS 21

Is This What We Want?

All of the expression data is now nicely loaded in a data frame.
But this data frame really breaks into two parts quite nicely –
gene information, and expression values. If we split these apart,
then the expression value matrix has 102 columns,
corresponding to the sample info entries quite nicely.

singh_annotation <- singh_dchip_data[,1:5];
singh_dchip_expression <-

as.matrix(singh_dchip_data[,6:107]);
rownames(singh_dchip_expression) <-

singh_annotation\$probe.set;
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Grab the Sample Info Too

What are the columns in my sample info file?

scan name sample name type
run_date_block cluster_block

N01__normal N01 N 2 2

(the last two you might not have).

singh_sample_info <-
read.delim("../SinghProstate/sample_info_2.txt"

, comment.char = ""
, nrows = 103

);
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Test Something Interesting

In the first homework, we saw that the data split into two clusters
that didn’t agree well with the tumor/normal split. It might very
well be that there was some type of batch effect in addition to the
biological split of interest.

Can we factor the batch effect out? If we know what the batch
split is, we can first fit a model using just the batches, subtract the
fit off, and then fit a model using the tumor/normal split on what
remains.
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Tumor vs Normal

singh_probeset_lm <-
lm(singh_dchip_expression[

singh_annotation$probe.set
== "31539_r_at",]

˜ singh_sample_info$type
);

singh_probeset_anova <-
anova(singh_probeset_lm);
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Tumor vs Normal (cont)

> singh_probeset_anova
Analysis of Variance Table

Response: singh_dchip_expression[
singh_annotation$probe.set == "31539_r_at",]

Df Sum Sq Mean Sq F value Pr(>F)
$type 1 71.42 71.42 5.3748 0.02247 *
Residuals 100 1328.81 13.29
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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T vs N, After Blocking

singh_probeset_lm_full <-
lm(singh_dchip_expression[

singh_annotation$probe.set
== "31539_r_at",]

˜ singh_sample_info$cluster.block
+ singh_sample_info$type

);
singh_probeset_anova_full <-

anova(singh_probeset_lm_full);
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T vs N, After Blocking (cont)

> singh_probeset_anova_full
Analysis of Variance Table

Response: singh_dchip_expression[
singh_annotation$probe.set == "31539_r_at",]

Df Sum Sq Mean Sq F value Pr(>F)
$block 1 404.97 404.97 40.6399 5.85e-09 ***
$type 1 8.75 8.75 0.8779 0.3511
Residuals 99 986.51 9.96
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Hasn’t Someone Done This?

Other people have thought about the data structures that might
be natural for microarray data. In particular, a lot of these
functions are collected at Bioconductor.

Let’s try to grab some of the packages and functions that will help
with this type of analysis.
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Bioconductor Packages

You will need the following packages from the Bioconductor web
site. Use the menu item “Packages” −> “Install package(s) from
BioConductor...” to get them.

reposTools : Repository tools for R

Biobase : Base functions for BioConductor

affy : Methods for Affymetrix oligonucleotide arrays

affydata : Affymetrix data for demonstration purposes

affypdnn : Probe dependent nearest neighbor (PDNN) for the
affy package
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Bioconductor Widget Packages

In order to use some of the graphical tools that make it easier to
read Affymetrix microarray data and construct sensible objects
describing the experiments, you will also need the following
packages from the Bioconductor web site.

tkWidgets : R based Tk widgets

widgetTools : Creates an interactive tcltk widget

DynDoc : Dynamic document tools
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Microarray Data Structures

Recap: What information do we need in order to analyze a
collection of microarray experiments?
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Microarray Data Structures

Recap: What information do we need in order to analyze a
collection of microarray experiments?
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Phenotypes

The Biobase package in BioConductor views the sample
information as an extension of the notion of a data frame, which
they call a phenoData object. In their conception, this object
contains the “phenotype” information about the samples used in
the experiment. The extra information in a phenoData object
consist of optional “long” labels that can be used to identify the
covariates (or factors) in the columns.
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Mock data

Let’s create a fake data set. We pretend we have measured 200
genes in 8 experimental samples, the first four of which are
healthy and the last four are cancer patients.

> fake.data <- matrix(rnorm(8*200), ncol=8)
> sample.info <- data.frame(
+ spl=paste(’A’, 1:8, sep=’’),
+ stat=rep(c(’healthy’, ’cancer’), each=4)

At this point, we have a matrix containing fake expression data
and a data fame containing two columns (“spl” and “stat”). Let’s
create a phenoData object with more intelligible labels:

> pheno <- new("phenoData", pData=sample.info,
+ varLabels=list(’Sample Name’, ’Cancer Status’))
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> pheno
phenoData object with 2 variables and 8 cases
varLabels

: Sample Name
: Cancer Status

> pData(pheno)
spl stat

1 A1 cancer
2 A2 cancer
3 A3 cancer
4 A4 cancer
5 A5 healthy
6 A6 healthy
7 A7 healthy
8 A8 healthy
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ExprSets

The object in BioConductor that links together a collection of
expression data and its associated sample information is called
an exprSet .

> my.experiments <- new("exprSet",
+ exprs=fake.data, phenoData=pheno)
> my.experiments
Expression Set (exprSet) with

200 genes
8 samples

phenoData object with 2 variables and 8 cases
varLabels

: Sample Name
: Cancer Status

c© Copyright 2004, 2005 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



INTRODUCTION TO MICROARRAYS 36

Warning

If you create a real exprSet this way, you should ensure that the
columns of the data matrix are in exactly the same order as the
rows of the sample information data frame; the software has no
way of verifying this property without your help.

You’ll also need to put together something that describes the
genes used on the microarrays.
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Where is the gene information?

The exprSet object we have created so far lacks an essential
piece of information: there is nothing to describe the genes. One
flaw in the design of BioConductor is that it allows you to
completely separate the biological information about the genes
from the expression data. (This blithe acceptance of the
separation is surprisingly common among analysts.)

Each exprSet includes a slot called annotation , which is a
character string containing the name of the environment that
holds the gene annotations.

We’ll return to this topic later to discuss how to create these
annotation environments.
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Optional parts of an exprSet

In addition to the expression data (exprs ) and the sample
information (phenoData ), each exprSet includes several
optional pieces of information:

annotation name of the gene annotation enviroment

se.exprs matrix containing standard errors of the expression
estimates

notes character string describing the experiment

description object of class MIAME describing the experiment
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Affymetrix Data in BioConductor

For working with Affymetrix data, BioConductor includes a
specialized kind of exprSet called an AffyBatch . To create an
AffyBatch object from the CEL files in the current directory, do
the following:

> library(affy) # load the affy library
> my.data <- ReadAffy() # read CEL data

You may have to start by telling R to use a different working
directory to find the CEL files; the command to do this is setwd .

> setwd("/my/celfiles") # point to the CEL files

Paths in R are separated by forward slashes (/) not backslashes
(\); this is a common source of confusion.
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Demonstration data

Note: If you are trying to follow along and have not yet obtained
some CEL files, the affydata package includes demonstration
data fom a dilution experiment. You can load it by typing

> library(affydata)
> data(Dilution)

These commands will create an AffyBatch object called
Dilution that you can explore.
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Peeking at what’s inside

BioConductor will automatically build an object with the correct
gene annotations for the kind of array you are using the first time
you access the data; this may take a while, since it downloads all
the information from the internet. So, don’t be surprised if it takes
a few minutes to display the response to the command

> Dilution
AffyBatch object
size of arrays=640x640 features (12805 kb)
cdf=HG_U95Av2 (12625 affyids)
number of samples=4
annotation=hgu95av2

c© Copyright 2004, 2005 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



INTRODUCTION TO MICROARRAYS 42

Looking at the experimental design

You can see what the experiments are by looking at the
phenotype information.

> phenoData(Dilution)
phenoData object with 3 variables and 4 cases
varLabels

liver: amount of liver RNA hybridized to array in micrograms
sn19: amount of central nervous system RNA hybidized to array
scanner: ID number of scanner used

> pData(Dilution)
liver sn19 scanner

20A 20 0 1
20B 20 0 2
10A 10 0 1
10B 10 0 2
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A first look at an array

> image(Dilution[,1])
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A summary view of four images

> boxplot(Dilution, col=1:4)
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The distribution of feature intensities

> hist(Dilution, col=1:4, lty=1)
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Examining individual probesets

The affy package in BioConductor includes tools for extracting
individual probe sets from a complete AffyBatch object. To get
at the probe sets, however, you need to be able to refer to them
by their “name”, which at present means their Affymetrix ID.

> geneNames(Dilution)[1:3]
[1] "100_g_at" "1000_at" "1001_at"
> random.affyid <- sample(geneNames(Dilution), 1)
> # random.affyid <- ’34803_at’
> ps <- probeset(Dilution, random.affyid)[[1]]

The probeset function returns a list of probe sets; the
mysterious stuff with the brackets takes the first element from the
list (which only had one...).
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A probeset profile in four arrays

> plot(c(1,16), c(50, 900), type=’n’,
+ xlab=’Probe’, ylab=’Intensity’)
> for (i in 1:4) lines(pm(ps)[,i], col=i)
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Examining individual probesets

Let’s add the mismatch probes to the graph:

> for (i in 1:4) lines(pm(ps)[,i], col=i)
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PM − MM

> plot(c(1,16), c(-80, 350), type=’n’,
+ xlab=’Probe Pair’, ylab=’PM - MM)
> temp <- pm(ps) - mm(ps)
> for (i in 1:4) lines(temp[,i], col=i)
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RNA degradation

Individual (perfect match) probes in each probe set are ordered
by location relative to the 5’ end of the targeted mRNA molecule.
We also know that RNA degradation typically starts at the 5’ end,
so we would expect probe intensities to be lower near the 5’ end
than near the 3’ end.

The affy package of BioConductor includes functions to
summarize and plot the degree of RNA degradation in a series of
Affymetrix experiments. These methods pretend that something
like “the fifth probe in an Affymetrix probe set” is a meaningful
notion, and they average these things over all probe sets on the
array.
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Visualizing RNA degradation

> degrade <- AffyRNAdeg(Dilution)
> plotAffyRNAdeg(degrade)
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Processing Affymetrix data

BioConductor breaks down the low-level processing of Affymetrix
data into four steps. The design is highly modular, so you can
choose different algorithms at each step. It is highly likely that the
results of later (high-level) analyses will change depending on
yopur choices at these steps.

• Background correction

• Normalization (on features)

• PM-correction

• Summarization
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Background correction

The list of available background correction methods is stored in a
variable:

> bgcorrect.methods
[1] "mas" "none" "rma" "rma2"

So there are four methods:

none Do nothing

mas Use the algorithm from MAS 5.0

rma Use the algorithm from the current version of RMA

rma2 Use the algorithm from an older version of RMA
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Background correction in MAS 5.0

MAS 5.0 divides the microarray (more precisely, the CEL file) into
16 regions. In each region, the intensity of the dimmest 2% of
features is used to define the background level. Each probe is
then adjusted by a weighted average of these 16 values, with the
weights depending on the distance to the centroids of the 16
regions.
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Background correction in RMA

RMA takes a very different approach to background correction.
First, only PM values are adjusted, the MM values are not
changed at all. Second, they try to model the distribution of PM
intensities statistically as a sum of

• exponential signal with mean λ

• normal noise with mean µ and variance σ2 (truncated at 0 to
avoid negatives).

If we observe a signal X = x at a PM feature, we adjust it by

E(s|X = x) = a + b
φ(a/b)− φ((x− a)/b)

Φ(a/b) + Φ((x− a)/b)− 1

where b = σ and a = s− µ− λσ2.
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Comparing background methods

> d.mas <- bg.correct(Dilution[,1], "mas")
> d.rma <- bg.correct(Dilution[,1], "rma")
> bg.with.mas <- pm(Dilution[,1]) - pm(d.mas)
> bg.with.rma <- pm(Dilution[,1]) - pm(d.rma)
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> summary(bg.with.mas)
Min. :74.53
1st Qu.:93.14
Median :94.35
Mean :94.27
3rd Qu.:95.80
Max. :97.67
> summary(bg.with.rma)
Min. : 72.4
1st Qu.:113.7
Median :114.9
Mean :112.1
3rd Qu.:114.9
Max. :114.9

c© Copyright 2004, 2005 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



INTRODUCTION TO MICROARRAYS 58

Difference in background estimates

On this array, RMA gives slightly larger background estimates,
and gives estimates that are more nearly constant across the
array. The overall differences can be displayed in a histogram.
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Quantification = summarization

I’m going to avoid talking about normalization and PM correction
for the moment, and jump ahead to summarization. As we have
explained previously, this step is the critical final component in
analyzing Affymetrix arrays, since it’s the one that combines all
the numbers from the PM and MM probe pairs in a probe set into
a single number that represents our best guess at the expression
level of the targeted gene.

The available summarization methods, like the other available
methods, can be obtained from a variable.

express.summary.stat.methods
[1] "avgdiff" "liwong" "mas"

"medianpolish" "playerout"
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Including the PDNN method

The implementation of the PDNNmethod is contianed in a
separate package. When you load the package libary, it updates
the list of available methods.

> library(affypdnn)
registering new summary method ’pdnn’.
registering new pmcorrect method ’pdnn’

and ’pdnnpredict’.
> express.summary.stat.methods
[1] "avgdiff" "liwong" "mas"
[4] "medianpolish" "playerout" "pdnn"
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expresso

The recommended way to put together all the steps for
processing Affymetrix arrays in BioConductor is with the function
expresso . Here’s an example that blocks everything except the
summarization:

> tempfun <- function(method) {
+ expresso(Dilution, bg.correct=FALSE,
+ normalize=FALSE, pmcorrect.method="pmonly",
+ summary.method=method)
+ }
> ad <- tempfun("avgdiff") # MAS4.0
> al <- tempfun("liwong") # dChip
> am <- tempfun("mas") # MAS5.0
> ap <- tempfun("pdnn") # PDNN
> ar <- tempfun("medianpolish") # RMA
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M-versus-A plots

Instead of plotting two similar things on the usual x and y axes,
plot the average ((x + y)/2) along the horizontal axis and the
difference (y − x) along the vertical axis. The affy package
includes a function called mva.pairs to make it easier to
generate these plots. We’re going to use this to compare the
different quantification/summary methods.

> temp <- data.frame(exprs(ad)[,1], exprs(al)[,1],
+ exprs(am)[,1], 2ˆexprs(ar)[,1])
> dimnames(temp)[[2]] <- c(’Mas4’, ’dChip’,
+ ’Mas5’, ’RMA’)
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More about reading Affymetrix data

The BioConductor affy package includes a graphical interface
to make it easier to read in Affymetrix data and contruct
AffyBatch objects.
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Affy Widgets
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Affy Widgets
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Affy Widgets
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Affy Widgets
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Affy Widgets
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Affy Widgets
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Affy Widgets
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Affy Widgets
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