Analysis of Microarray Data

Keith Baggerly and Kevin Coombes
Section of Bioinformatics
Department of Biostatistics and Applied Mathematics
UT M. D. Anderson Cancer Center
kabagg@mdanderson.org
kcoombes@mdanderson.org

20 September 2005
Lecture 5: Affymetrix, R, and BioConductor

• Processing Affymetrix data

• Quantification = summarization

• Description of quantification methods
 • MAS 5.0
 • RMA
 • PDNN

• Quality control assessment
Processing Affymetrix Data in BioConductor

Recall that we can load all the CEL files in a directory using these commands:

> library(affy) # load the affy library
> # next, point to the directory with our CEL files
> setwd("c:/projects/celfiles")
> my.data <- ReadAffy() # read all the CEL data

To continue with an example that doesn’t require a lot of CEL files, we can load in a demonstration data set:

> library(affydata)
> data(Dilution)

These commands will create an AffyBatch object called Dilution that you can explore.
Processing Affymetrix data

BioConductor breaks down the low-level processing of Affymetrix data into four steps. The design is highly modular, so you can choose different algorithms at each step. It is highly likely that the results of later (high-level) analyses will change depending on your choices at these steps.

- Background correction
- Normalization (on the level of features = probes)
- PM-correction
- Summarization
Background correction

The list of available background correction methods is stored in a variable:

```r
> bgcorrect.methods
[1] "mas"  "none"  "rma"   "rma2"
```

So there are four methods:

- **none** Do nothing
- **mas** Use the algorithm from MAS 5.0
- **rma** Use the algorithm from the current version of RMA
- **rma2** Use the algorithm from an older version of RMA
Background correction in MAS 5.0

MAS 5.0 divides the microarray (more precisely, the CEL file) into 16 regions. In each region, the intensity of the dimmest 2% of features is used to define the background level. Each probe is then adjusted by a weighted average of these 16 values, with the weights depending on the distance to the centroids of the 16 regions.
Background correction in RMA

RMA takes a very different approach to background correction. First, only PM values are adjusted, the MM values are not changed at all. Second, they try to model the distribution of PM intensities statistically as a sum of

- exponential signal with mean λ
- normal noise with mean μ and variance σ^2 (truncated at 0 to avoid negatives).

If we observe a signal $X = x$ at a PM feature, we adjust it by

$$E(s|X = x) = a + b \frac{\phi(a/b) - \phi((x - a)/b)}{\Phi(a/b) + \Phi((x - a)/b) - 1}$$

where $b = \sigma$ and $a = s - \mu - \lambda\sigma^2$.
Comparing background methods

> d.mas <- bg.correct(Dilution[,1], "mas")
> d.rma <- bg.correct(Dilution[,1], "rma")
> bg.with.mas <- pm(Dilution[,1]) - pm(d.mas)
> bg.with.rma <- pm(Dilution[,1]) - pm(d.rma)
> summary(bg.with.mas)
Min. :74.53
1st Qu.:93.14
Median :94.35
Mean :94.27
3rd Qu.:95.80
Max. :97.67

> summary(bg.with.rma)
Min. : 72.4
1st Qu.:113.7
Median :114.9
Mean :112.1
3rd Qu.:114.9
Max. :114.9
Difference in background estimates

On this array, RMA gives slightly larger background estimates, and gives estimates that are more nearly constant across the array. The overall differences can be displayed in a histogram.
How big is 20 units?

> summary(pm(Dilution[,1]))

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>76.0</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>137.0</td>
</tr>
<tr>
<td>Median</td>
<td>225.0</td>
</tr>
<tr>
<td>Mean</td>
<td>507.3</td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>489.0</td>
</tr>
<tr>
<td>Max.</td>
<td>23356.3</td>
</tr>
</tbody>
</table>

> summary(mm(Dilution[,1]))

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>77.3</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>120.3</td>
</tr>
<tr>
<td>Median</td>
<td>164.5</td>
</tr>
<tr>
<td>Mean</td>
<td>323.5</td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>313.0</td>
</tr>
<tr>
<td>Max.</td>
<td>17565.3</td>
</tr>
</tbody>
</table>
Quantification = summarization

I’m going to avoid talking about normalization and PM correction for the moment, and jump ahead to summarization. As we have explained previously, this step is the critical final component in analyzing Affymetrix arrays, since it’s the one that combines all the numbers from the PM and MM probe pairs in a probe set into a single number that represents our best guess at the expression level of the targeted gene.

The available summarization methods, like the other available methods, can be obtained from a variable.

> express.summary.stat.methods
[1] "avgdiff" "liwong" "mas"
 "medianpolish" "playerout"
The recommended way to put together all the steps for processing Affymetrix arrays in BioConductor is with the function `expresso`. Here's an example that blocks everything except the summarization:

```r
> tempfun <- function(method) {
+   expresso(Dilution, bg.correct=FALSE,
+            normalize=FALSE,
+            pmcorrect.method="pmonly",
+            summary.method=method)
+ }
> ad <- tempfun("avgdiff") # MAS4.0
> al <- tempfun("liwong") # dChip
> am <- tempfun("mas") # MAS5.0
> ar <- tempfun("medianpolish") # RMA
```
Bland-Altman (M-versus-A) plots

Early in the study of microarrays, several groups (including ours) introduced what have come to be known in the microarray world as “M-versus-A” plots or sometimes just MA-plots. Statisticians knew these as “Bland-Altman” plots long before anyone started studying microarrays, since they were among the first people to use them.

The problem being solved by a Bland-Altman MA-plot is that of providing a useful graphical display of two vectors of data, x and y, which typically represent two measurements that should (almost always) be the same. The first thing that comes to mind is to plot y against x in the usual way, and see how well the points follow the identity line $y = x$.
Bland-Altman (M-versus-A) plots

The difficulties with this simple approach are

1. Humans can recognize horizontal lines much more easily than the can recognize diagonal lines.

2. Different aspect ratios (i.e., different scales along the axes) can move the line away from the diagonal.

3. Deviations from a titled diagonal line are hard to estimate accurately by eye.

The Bland-Altman solution is to rotate the plot by 45 degrees, which turns the diagonal line into a horizontal line. To do this, they plot the average \(((x + y)/2) \) along the horizontal axis and the difference \((y - x) \) along the vertical axis.
MA-plots in BioConductor

The *affy* package includes a function called `mva.pairs` to make it easier to generate these plots. (You should also check out the `MAplot` function.) We’re going to use this to compare the different quantification/summary methods.

```r
> temp <- data.frame(exprs(ad)[,1], exprs(al)[,1],
+                    exprs(am)[,1], 2^exprs(ar)[,1])
> dimnames(temp)[[2]] <- c('Mas4', 'dChip',
+                          'Mas5', 'RMA')
> mva.pairs(temp)
```
AFFYMETRIX, R, AND BIOCONDUCTOR

MVA plot

Mas4

Median: -0.47
IQR: 0.595

dChip

Median: 0.0110
IQR: 0.0943

Mas5

Median: 0.0035
IQR: 0.0727

Median: 0.473
IQR: 0.567

Median: 0.478
IQR: 0.591

Median: -0.0060
IQR: 0.115

RMA

GS01 0163: ANALYSIS OF MICROARRAY DATA
Alternate preprocessing

It is possible that the differences we see in the MA-plots are caused because we did no processing before summarization. Let’s try again, but this time we will use `expresso` to correct background with the RMA method, perform quantile normalization, and just use the PM values for summarization.

```r
> tempfun <- function(method) {
+   expresso(Dilution,
+             bgcorrect.method="rma",
+             normalize.method="quantiles",
+             pmcorrect.method="pmonly",
+             summary.method=method)
+ }
```
Alternate preprocessing

Now we repeat the same commands as before, which use the four different summarization methods on the same array and put them into a temporary data frame for display.

```R
+ ad <- tempfun("avgdiff")  # MAS4.0
+ al <- tempfun("liwong")    # dChip
+ am <- tempfun("mas")       # MAS5.0
+ ar <- tempfun("medianpolish")  # RMA
+ temp <- data.frame(exprs(ad)[,1], exprs(al)[,1],
                      exprs(am)[,1], 2^exprs(ar)[,1])
+ dimnames(temp)[[2]] <- c('Mas4', 'dChip',
                           'Mas5', 'RMA')
+ mva.pairs(temp)
```
Comparison of summarization methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Median</th>
<th>IQR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mas4</td>
<td>-0.923</td>
<td>1.03</td>
</tr>
<tr>
<td>dChip</td>
<td>0.0127</td>
<td>0.216</td>
</tr>
<tr>
<td>Mas5</td>
<td>0.971</td>
<td>1.00</td>
</tr>
<tr>
<td>RMA</td>
<td>0.00994</td>
<td>0.265</td>
</tr>
</tbody>
</table>
How do the summarization methods work?

Recall first what we know about the oldest method for processing Affymetrix data, the AvDiff method of MAS4.0. This method

1. Uses the background-correction method described above, based on the bottom 2% of probes.

2. Normalizes by scaling the median intensity to a fixed value.

3. Computes the PM – MM differences.

4. Trims outliers and computes the average (mean) of the differences.
Review of dChip

We have also looked previously at the dChip method:

1. Does not perform background correction.

2. Normalizes using an “invariant set” method (described later).

3. Optionally uses either both PM and MM values or PM-only.

4. Fits a statistical model for sample i, and probe j,

$$MM_{ij} = \nu_j + \theta_i \alpha_j + \epsilon$$

$$PM_{ij} = \nu_j + \theta_i \alpha_j + \theta_i \phi_j + \epsilon$$

Focusing on the PM − MM differences, this model estimates the probe affinities ϕ_j and the expression values θ_i.
Improving Robustness: MAS 5.0

Affymetrix learned something from the modelling process. In particular, they noted the importance of multiplicative adjustments and statistical measures with some means of identifying outliers. They also noted that negative values from AvDiff just weren’t well received by biologists or statisticians.

They modified their algorithm in several ways. Instead of the straight MM value, they subtract a “change threshold” (CT) which is guaranteed to be lower than the PM value. Basically, they “fix” the MM value when it is smaller than PM. Next, they shifted to the log scale to capture multiplicative effects. Finally, they used a robust statistical method to downweight outliers instead of their earlier as hoc method.

\[
\text{signal} = \exp(\text{Tukey Biweight}(\log(\text{PM}_j - \text{CT}_j)))
\]
MAS 5.0 vs MAS 4.0

It was at this stage that Affy decided it wasn’t going to fight to have the best algorithm; it would let others play that game. Indeed, it could reap the benefits of better algorithms by selling more chips.

To let people test their own models, they created and posted a test dataset: The Affy Latin Square Experiment.

Using the test set, they could demonstrate that the MAS5 signal statistic is an improvement on AvDiff. It tracks nominal fold changes better, and it is less variable.

What it still doesn’t do is use information across chips.
Robust Multichip Analysis: RMA

RMA (Irizarry et al, Biostatistics 2003) tries to take the better aspects of both dChip and MAS 5.0, and to add some further twists.

Earlier in this lecture, we described the statistical model used by RMA to perform background correction.

They normalize using the “median polish” method, which we will describe in a later lecture.

They throw away the MM values entirely. They contend that there are too many cases where MM > PM, and hence including the MMs introduces more variability than the correction is worth. (They are probably correct.)
Robust Multichip Analysis: RMA

As with dChip, the RMA summarization method is built around a model:

\[\log(\text{medpol}(PM_{ij} - BG)) = \mu_i + \alpha_j + \epsilon_{ij} \]

(array \(i \), probe \(j \)).

The parameters of this model are fit using multiple chips.

Unlike dChip, the random jitter (epsilon) is introduced on the log scale as opposed to the raw scale. This more accurately captures the fact that more intense probes are more variable.
Incorporating other information: PDNN

The above methods are all mathematical, in that they focus solely on the observed values without trying to explain those values.

Why should some probes give consistently stronger signals than others?

What governs nonspecific binding?

In general, these will depend on the exact sequence of the probe, and the thermodynamics of the binding.
Fitting the thermodynamics

Li Zhang recently introduced the Position-Dependent Nearest Neighbor (PDNN) model (Nat Biotech, 2003; 21:818). Unlike dChip and RMA, the parameters for the PDNN model can all be estimated from a single chip, in large part because the number of parameters is much smaller.

He posits a scenario where the chance of binding is dictated by the probe sequence, and shifts the mathematical modeling back from the expression values to the probe sequences.

The model parameters are:

1. The position k of a base pair in the sequence.

2. Interactions with nearest neighbors: knowing k, we must also know what is at $k - 1$ and $k + 1$.
What is the model?

The observed signal Y_{ij} for probe i in the probe set for gene j is modeled as

$$Y_{ij} = \frac{N_j}{1 + \exp(E_{ij})} + \frac{N^*}{1 + \exp(E^*_{ij})} + B$$

In this model, there are two global terms that need to be estimated: the background, B, and the number, N^*, of RNA molecules contributing to non-specific binding (NSB).

The quantity of interest is N_j, the number of expressed mRNA molecules contributing to gene-specific binding (GSB).

The binding energies E_{ij} and E^*_{ij} are sums over contributions from each position.
What are the model parameters?

For example, consider a probe with sequence

CACCCAGCTGGTCTCCTGTGGATGGGA

- We write this as an ordered list of neighboring pairs:

1. C, A \hspace{1cm} \text{energy} = w_1 \nu(b_1, b_2)
2. A, C \hspace{1cm} \text{energy} = w_2 \nu(b_2, b_3)
3. C, C \hspace{1cm} \text{energy} = w_3 \nu(b_3, b_4)
4. C, C \hspace{1cm} \text{energy} = w_4 \nu(b_4, b_5)
5. C, A \hspace{1cm} \text{energy} = w_5 \nu(b_5, b_6)
6. A, G \hspace{1cm} \text{energy} = w_6 \nu(b_6, b_7)
7. G, C \hspace{1cm} \text{energy} = w_7 \nu(b_7, b_8)
8. C, T \hspace{1cm} \text{energy} = w_8 \nu(b_8, b_9)
9. etc.
Free energy

The free energy for a perfect match is

\[E_{ij} = \sum_{k} w_k \nu(b_k, b_{k+1}) \]

There is a similar formula for binding in the presence of many mismatches. In total, there are 2*24 weight parameters, 2*16 neighboring base pair parameters, 2 global parameters, plus one expression parameter per probe set. Because there are many probes in each probe set, we can fit all these parameters with a single chip.
Fitted weight parameters
Using PDNN in R

The implementation of the PDNN method is contained in a separate BioConductor package. When you load the package library, it updates the list of available methods.

```r
> library(affypdnn)
registering new summary method 'pdnn'.
registering new pmcorrect method 'pdnn' and 'pdnnpredict'.
> express.summary.stat.methods
[1] "avgdiff"   "liwong"      "mas"
[4] "medianpolish" "playerout"   "pdnn"
```
Using PDNN in R

One should note that the PDNN method does not follow the standard four-step procedure used by expresso. Instead of background correction, the method starts immediately with quantile normalization. The model can be fit separately on the PM and MM probes, or the MM probes can be discarded. Background is estimated along with the energy parameters and expression parameters as part of a single model.

In particular, you must use a variant of expresso called expressopdnn.
Which method is best?

Well, all of the above methods are implemented in Bioconductor. We’re going to try a few head to head comparisons later. In this context, it’s worth thinking about how we can define a measure of “goodness”. Hmm?
Quality control assessment

A critical part of the analysis of any set of microarray experiments is ensuring that the arrays are of reasonable quality. BioConductor includes several methods to assist with the QC effort for Affymetrix projects.

The first step is typically to look at the images, which we did in the previous lecture.

We can also look at the distributions of intensities to see how well they match.

BioConductor includes tools to compute some summary statistics that tell us about the relative quality and comparability of arrays.
A summary view of four images

> boxplot(Dilution, col=1:4)
The distribution of feature intensities

> hist(Dilution, col=1:4, lty=1)
Simple Affy

We can use the `simpleaffy` package to compute some QC summary statistics.

```r
> require(simpleaffy)  # load the library
> Dil.qc <- qc(Dilution)  # compute the QC metrics
```

Computing the metrics will take a little time, and then we can start to look at them.
Background

The first check we make is that the background values across the arrays should be roughly comparable. In the four arrays from the dilution experiment, that seems to be the case.

```r
> avbg(Dil.qc) # average background
  20A  20B  10A  10B
94.25323 63.63855 80.09436 54.25830
> maxbg(Dil.qc) # maximum background
  20A  20B  10A  10B
97.66280 68.18998 83.24646 57.62283
> minbg(Dil.qc) # minimum background
  20A  20B  10A  10B
89.52555 60.01397 77.32196 49.22574
```
Global scaling factors

As mentioned above, the standard Affymetrix normalization procedure involves globally rescaling the arrays to set the median probe intensity to the same level. Affymetrix says that the scaling factors should not differ by more than 3-fold if we want to compare arrays.

```r
> sfs(Dil.qc)
[1]  0.8934013  1.2653627  1.1448430  1.8454067
```

Extremely low (below about 30%) or high (above about 60%) values for the percentage of probes called present also signal potential quality problems.

```r
> percent.present(Dil.qc)
20A.present 20B.present 10A.present 10B.present
    48.79208    49.82178    49.37822    49.75842
```
3’/5’ ratios

Affymetrix includes probes at the 3’ and 5’ ends of some control genes; the ratios should be less than 3.

```r
> ratios(Dil.qc)

    AFFX-HSAC07.3'/5'  AFFX-HUMGAPDH.3'/5'
20A  0.6961423    0.4429746
20B  0.7208418    0.3529890
10A  0.8712069    0.4326566
10B  0.9313709    0.5726650

    AFFX-HSAC07.3'/M  AFFX-HUMGAPDH.3'/M
20A  0.1273385    -0.0602414
20B  0.1796231    -0.0136629
10A  0.2112914    0.4237527
10B  0.2725534    0.1125823
```
RNA degradation

Individual (perfect match) probes in each probe set are ordered by location relative to the 5’ end of the targeted mRNA molecule. We also know that RNA degradation typically starts at the 5’ end, so we would expect probe intensities to be lower near the 5’ end than near the 3’ end.

The `affy` package of BioConductor includes functions to summarize and plot the degree of RNA degradation in a series of Affymetrix experiments. These methods pretend that something like “the fifth probe in an Affymetrix probe set” is a meaningful notion, and they average these things over all probe sets on the array.
Visualizing RNA degradation

```r
> degrade <- AffyRNAdeg(Dilution)
> plotAffyRNAdeg(degrade, col=1:4)
```

![RNA digestion plot](image)
Model-based QC

As we have seen, methods like dChip and RMA fit statistical models to the probe intensities in order to summarize gene expression values. The quantities associated with such models can also provide QC information. The BioConductor package `affyPLM` fits a probe-level model (PLM) similar to RMA.

```r
> require("affyPLM")
> pset <- fitPLM(Dilution)
```

The residuals (unexplained variation) from the model can be plotted using the `image` function. Patterns here typically indicate spatial flaws in the image that are not captured by the model. No such features were noted in the Dilution experiment, so I won’t reproduce the pictures.
Relative Log Expression plots

> `Mbox(pset)`
Normalized Unscaled Standard Error

> boxplot(pset)