
GS01 0163
Analysis of Microarray Data

Keith Baggerly and Kevin Coombes
Section of Bioinformatics

Department of Biostatistics and Applied Mathematics
UT M. D. Anderson Cancer Center

kabagg@mdanderson.org
kcoombes@mdanderson.org

3 November 2005



R AND GLASS MICROARRAYS 1

Lecture 18: R and Glass Microarrays

• Microarray Data Structures

• marray data structures

• limma data structures

• Toward a modular and efficient design

• Quantifying Glass Microarrays

• Getting down to business

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 2

The threefold way

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 3

Microarray Data Structures

Recall from Lecture 5 on R and Affymetrix arrays:

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 4

Recall: Affymetrix analysis in BioConductor

• exprSets combine expression data and sample information

• Can be linked in an efficient way to gene information

• AffyBatch objects hold the raw data

• Easy to construct from a directory of CEL files
• Gene annotations updated automatically
• Useful quality control tools

• Structured, modular preprocessing with expresso

• Background correction
• Normalization
• PM correction
• Summarization

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 5

Glass arrays in BioConductor

BioConductor includes two different package bundles to deal with
two-color glass microarrays: marray and limma .

Neither package uses the notion of an exprSet .

In both cases, the design seems to be less flexible and less
modular than the tools for working with Affymetrix arrays.

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 6

marray data structures

The marray package uses four basic classes to hold the data
from a collection of microarray experiments.

marrayInfo : holds sample information or gene information

marrayLayout : describes the geometry of the array

marrayRaw : holds the raw array data

marrayNorm : holds array data after normalization

The primary processing function is maNorm, which allows you to
try a limited number of normalization methods.

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 7

Sample or Gene Information

In marray , the same kind of object (marrayInfo ) is used to
hold either sample information or gene information. This object is
a data frame with extra information attached (like the phenoData
objects in an exprSet ). The extra information includes longer
descriptive labels for the columns and a character string with any
notes you’d like to attach to the object.

When used to describe genes, the rows correspond to spots on
the array and columns to gene annotations.

When used to describe samples, the rows correspond to
microarrays and columns give information about the samples. In
particular, the columns should identify the samples used in both
the Cy3 and Cy5 channels.

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 8

Things I don’t like about marrayInfo

• No gene-specific or sample-specific tools. Can only tell how to
interpret the object in context.

• Forced combining of Cy3 and Cy5 sample information on the
same row of the sample information

Although this is peeking ahead, it’s also worth noting that every
experimental data set (marrayRaw or marrayNorm ) must
contain its own copy of the gene-information marrayInfo
object. This is a terrible design decision. It wastes space (on disk
or in memory) and is impossible to maintain. If the annotations
must be updated, you have to hunt down innumerable copies and
update all of them.

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 9

Geometry of glass microarray designs

As we have seen previously, glass microarrays are typically laid
out in a hierarchical layout, containing a rectangle of grids, each
of which is a rectangle of spots. Also, each grid is spotted on the
array by a different physical pin.

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 10

marrayLayout slots

The marray package uses an marrayLayout object to
describe the geometry using five numbers:

maNgr : number of grid rows

maNgc : number of grid columns

maNsr : number of spot rows

maNsc : number of spot columns

maNspots : number of spots

It is perhaps odd that they store the number of spots, since it
seems to me that it should always be easily computable in terms
of the other four parameters.

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 11

marrayLayout slots

The marrayLayout object may also include three additional
vectors

maSub : a logical vector: are we currently interested in this spot?

maPlate : which plate did the robot get this spot from?

maControls : what kind of material is spotted here?

Metaphors appear to be mixed here: the maPlate and
maControls vectors belong to the array design, and not to the
specific analysis. The maSubobject, however, seems to be an
analysis-specific filter to let you focus on specific genes.

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 12

marrayLayout methods

They include methods to compute the following quantities, but
they do not store them in the object:

maPrintTip : vector of print tips for the spots

maGridCol : vector of grid column locations

maGridRow : vector of grid row locations

maSpotCol : vector of spot column locations

maSpotRow : vector of spot row locations

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 13

More complaints

The design of marrayLayout is a mess.

Every marrayRaw and marrayNorm gets its own copy. This
design has serious maintenance problems. Because they realize
this mistake, they use methods to compute the vector locations.
(Their explanation: storing them takes too much space.) A
drawback of computing them, however, is that this assumes that
the order of the data rows is always the same; however, different
quantification packages do not produce the same row order when
they quantify the spots.

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 14

marrayRaw slots

Raw expression data from glass microarrays is stored as an
marrayRaw object, which contains:

• Four matrices of raw data (maRf, maGf, maRb, maRb) with red
(R) and green (G) foreground (f) and background (b) estimates.

• An optional matrix (maW) of spot quality weights.

• maLayout , containing the array layout

• maGnames, containing the gene information

• maTargets , containing the sample information

As pointed out earlier, including copies of the layout and gene
information is inefficient and hard to maintain.

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 15

marrayRaw methods

maA : vector of log intensities

maM : vector of log ratios

maLR : vector of background-corrected red log intensities

maLG : vector of background-corrected red log intensities

Note that there is no option to perform any form of background
correction other than simply subtracting the values supplied by
the image quantification software.

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 16

marrayNorm slots

Processed expression data from glass microarrays is stored as
an marrayNorm object. These contain copies of the maW,
maLayout , maGnames, and maTargets objects from the raw
source data. In place of the raw measurements, these objects
contain

maA : matrix of average log intensities

maM : matrix of log ratios

maMloc : localization normalization values

maMscale : scale normalization values

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 17

Getting from marrayRaw to marrayNorm

Once we have an object in hand containing raw microarray
measurements, we can simply coerce them into normalized
values. This will do no pre-processing, simply computing the M
and A values from the raw data.

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 18

Normalization methods

In most cases, we want to normalize the data using maNorm
(which is a wrapper around the more general function
maNormMain). The basic function call looks like

> maNorm(my.raw.data, norm=method)

The normalization method must be specified as a character
string, which must be one of the following: “none”, “median”,
“loess”, “twoD”, “printTipLoess”, or “scalePrintTipMAD”. Unlike
the approach taken with the Affymetrix arrays, there is no variable
containing a list of normalization methods and no obvious way to
add new methods. The more general method is extensible, but
the way to extend it is poorly documented.

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 19

The marray data cube

Fixed, hard-coded set of metrics (Rf, Gf, Rb, Gb, W).

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 20

limma data structures

The limma package in BioConductor provides a different set of
tools for glass microarrays.

RGList : raw microarray data as a list of arrays containing

• Four matrices, R, G, Rb, Gb, containing measurements.
• Optional components weights , printer , genes ,

targets .

MAList : processed microarray data as a similar list with M and
A components

Note that this is even more wasteful of space by making
innumerable copies of the gene information. . . .

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 21

The limma data cube

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 22

limma normalization methods

The limma package has its own normalization routines (since
they use different data structures than marray ). Each has
hard-coded option lists that are too painful to enumerate (or
contemplate).

• normalizeBetweenArrays

• normalizeWithinArrays

• normalizeForPrintOrder

• normalizeRobustSpline

• normalizeMedians

• normalizeQuantiles

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 23

Toward a modular and efficient design

In case you hadn’t noticed, I’m considerably less happy with the
BioConductor analysis of glass microarrays than with their
analysis of Affymetrix arrays. To review my main complaints:

• The data structures waste space

• The marray structures make it hard to combine array sets.

• It’s not easy to plug in new processing algorithms
(normalization or otherwise) to compare and contrast them.

• The designs do not use the exprSet structure, so it is hard to
write high-level analysis tools that work on both kinds of arrays.

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 24

An easily extended data cube

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 25

A few design principles

• Array design should be stored in exactly one place.

• Annotations can be updated easily.
• No wasted space storing duplicate copies.

• Must be possible to read data from different quantification
software and different array designs.

• Processing must be modular.

• Easy to figure out what methods are available.
• Easy to add new methods.

• After processing, should get an exprSet .

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 26

How should the two channels be handled?

Two possibilities

1. Each “sheet” is a slide
Slide Cy3 Name Cy5 Name Cy3 Status Cy5 Status
A1 RefMix T1 Reference Cancer
A2 N1 RefMix Healthy Reference

2. Each “sheet” is a separate channel
Slide Channel Sample Name Status
A1 Cy3 RefMix Reference
A1 Cy5 T1 Cancer
A2 Cy3 N1 Healthy
A2 Cy5 RefMix Reference

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 27

The processing pipeline

It should be possible to plug different algorithms in for each step
in the pipeline.

It should be possible to add additional steps.

Ideally, it should be possible from the final object to reconstruct
the processing history (which will be needed for the methods
section of an article based on the analysis!).

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 28

Quantifying Glass Microarrays

So far, I have avoided describing how glass array data gets from
the image quantification files into R and/or BioConductor.

The problem: There are lots of different software pacakges for
image quantification. Unlike the Affymetrix world (where
everything starts with the DAT and CEL files), this implies that
there are lots of different formats that need to be understood by a
general microarray analysis package.

In particular, when you construct an object to hold microarray
data, you not only need to know the array design (i.e., the
geometry and the gene annotations for each spot), but you need
to know what software quantified the images.

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 29

Microarray Quantification Packages

There are a variety of programs available for quantifying arrays,
including

• Free:

• UCSF Spot
• TIGR SpotFinder

• Commercial:

• ArrayVision (Imaging Research, Inc.)
• ImaGene (BioDiscovery, Inc.)
• MicroVigene (Vigene Tech, Inc.)

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

http://jainlab.ucsf.edu/Downloads.html
http://www.tm4.org/index.html


R AND GLASS MICROARRAYS 30

Microarray Quantification Packages

Most manufacturers (e.g., Agilent or the Axon GenePix) of
microarray scanners also supply quantification software.

• The critical issue to note is that every quantification package
uses its own:

• methods for finding, segmenting, and quantifying spots
• scheme for labeling the spots
• order for reporting the spots
• names for the measurements it reports.

The only thing they have in common is that they are all able to
export the data in tab-separated-values format, with rows
representing spots and columns representing measurements
(like location, foreground intensity, background intensity, etc.).

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 31

Quantifying Glass Microarrays

In this lecture, we are going to assume that we have somehow
managed to get our hands on a set of quantification files from a
batch of glass microarrays, and that we have determined what
the individual columns mean. Our next goal is to figure out how to
get this data into R and BioConductor so we can start doing
something useful with it.

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 32

Reading data into marray

In marray , they handle this problem by using a variety of “read”
functions:

• read.GenePix

• read.Spot

• read.SMD

• read.marrayRaw

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 33

Reading data into limma

In limma , there is a single “read” function

> read.maimages(files, source=SOMETHING)

This function uses hard-coded text strings to support different
quantification packages; source can be one of

agilent arrayvision genepix
imagene quantarray smd
spot

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 34

Better data input?

Neither marray nor limma makes it easy to add new
quantification packages. With marray , you presumably write
another function of the form read.my.quants , duplicating much
of the existing code to coerce the input data into the desired
format. In limma , you can’t change the hard-coded strings, but
you can take advantage of the many optional arguments of
read.maimages to construct a custom data reader.

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 35

Better data input?

Conceptually, the problem has a simple form. Quantification data
typicaly arrives as text files in tab-separated values format.
Different manufacturers have different names for teh columns that
we care about. All we need to know is

• How to map the manufacturer’s names to our standard names

• How many header lines to skip

• Whether the file contains one or two channels

If we had a description of the quantifier, we could use a single
extendible function like

> my.stuff <- read.arrays(files, quantifier)

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 36

Notes on our own methods

After teaching this course for the first time last year, I
imnplemented the “pipeline” processing idea. Code for this is
contained in the PreProcess package that is available on our
web site at

http:
//bioinformatics.mdanderson.org/Software/OOMPA

I’m still in the middle of implementing a generic microarray
quantification reader...

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

http://bioinformatics.mdanderson.org/Software/OOMPA
http://bioinformatics.mdanderson.org/Software/OOMPA


R AND GLASS MICROARRAYS 37

Getting down to business

An overview of the process:

1. Create an object that knows how to map spot label identifiers
to gene information.

2. Create an object that understands the geometry of the array.

3. Create an object that records the sample information.

4. Load the raw data from all the arrays.

5. Process (background correct, normalize, summarize) the raw
data.

6. Get to the fun part of the analysis. . . .

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 38

A sample GenePix GAL file

The Axon GenePix scanner software creates “.gal” files that
describe the geometry of a glass microarray, along with the
information that describes the gene probes at each spot.

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 39

The GenePix GAL file format

Axon describes the GAL file format on their web site:

http://www.moleculardevices.com/pages/software/
gn genepix file formats.html#gal

This is a special case of “Axon text format”. The first line of the
file (ATF 1) is required, and identifies the file format. The
second line (20 5 ) is also required. It tells us, in this case,
that there are 20 additional header lines before the main data
starts, and that there are 5 columns of data. The third line
(Type=GenePix ArrayList V1.0 ) is also required and
identifes the type of GAL file format. Since they have only ever
defined one version of the file format, this should be the same in
all GAL files.

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

http://www.moleculardevices.com/pages/software/gn_genepix_file_formats.html#gal
http://www.moleculardevices.com/pages/software/gn_genepix_file_formats.html#gal


R AND GLASS MICROARRAYS 40

Block-heads

The next set of header lines is optional. In this case, they have
chosen to tell us (BlockCount=16 ) that there are 16 blocks (or
subgrids) contained on the array. The next line (BlockType=0 )
encodes the fact that these are rectangular blocks. The URL=· · ·
line gives an optional web site for more information.

Note that, even though the blocks=subgrids are themselves laid
out in a rectangular pattern, the format at this point does not tell
us what that pattern is. Axon numbers the blocks starting with
number 1 in the upper left corner, marching across one row at a
time before moving down.

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 41

Block descriptions

Next, each block is described by a line of the form

"Block1= 500, 500, 100, 24, 180, 21, 180"

Each line contains 7 comma separated values describing the
block. The first two entries give the X, Y position (in microns) of
the top left corner of the block. The third value is the diameter of
each spot in microns. The fourth value is the number of rows,
and the fifth value is the spacing between spots in each row. The
final two numbers are the number of columns and the spacing
between spots in a column. Note that the geometry of the blocks
can be inferred from the set of their X, Y positions.

Finally, the file contains a tab-separated set of information
describing the spot locations and corresponding probe
information.

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 42

Reading GAL files

The marray package includes a function that knows how to read
GAL files, called, cleverly enough, read.Galfile . The simplest
use is:

> demo.gal <- read.Galfile(’demo.gal’,
> path=’c://arrays/designs’)

Warning: the following obvious attempt to read a GAL file
somewhere other than the current directory will NOT work:

read.Galfile(’c://arrays/designs/demo.gal’)

Here the problem is that read.Galfile uses path=’.’ as the
default value and always prepends the path to the file name.

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 43

Reading GAL files

After correctly reading the GAL file, the resulting object is a list:

> class(demo.gal)
[1] "list"
> attributes(demo.gal)
$names
[1] "gnames" "layout" "neworder"
> class(demo.gal$gnames)
[1] "marrayInfo"
> class(demo.gal$layout)
[1] "marrayLayout"
> class(demo.gal$neworder)
[1] "integer"

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 44

Reading GAL files

Since the GAL file contains the gene annotations (which have
now been put into an marrayInfo object) and the geometry (put
into an marrayLayout object), the function is able to extract
both pices of information. Thus, when working with array
quantifications from Axon, you can accomplish the first two steps
in a single function.

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 45

Other formats for gene information

ArrayVision produces quantification files that include spot
identifiers with absolutely no knowledge of the gene information:

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 46

Other formats for gene information

In this case, the core lab that produced the data also supplied a
separate file with the gene annotations:

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 47

Other formats for gene information

This example illustrates a more typical situtation.

1. Neither of these text files explicitly describes the geometry of
the array.

2. Neither file includes separate columns to identify the ‘grid and
subgrid row and column positions; these are embedded in the
spot labels or locations.

3. The data file uses “Spot labels” of the form A - 1 : A - 1 ,
while the annotations file describes the same “Location” in the
form A1a1.

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 48

Reading the gene information

When we have a simple tab-separated file (like this one)
containing the gene information, we can use it to produce a
marrayInfo object.

> location <- ’C://arrays/designs’
> filename <- ’CG4.2.Version2.GeneList.txt’
> cg42 <- read.marrayInfo(file.path(location,

filename), info.id=1:9, labels=6)

The info.id argument is optional; it is a list of the indices of the
columns of the gene info file to include. The labels argument is
also optional; it is the index of the column to use for labeling the
gene. In our example, column 6 contains the gene symbols.

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 49

Checking the results

> cg42
An object of class "marrayInfo"
@maLabels
[1] "" "RELA" "RBL1" "AMD1" "PIK3CA"
10075 more elements ...

@maInfo
Location IMAGE Accession

1 A1a1 753234 AC002404
2 A1a2 771220 BC011603
3 A1a3 249856 NM_002895
4 A1a4 149013 NM_001634
5 A1a5 345430 NM_006218

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 50

UniGene Gene Symbol Plate PlateRow PlateColumn
1 1 A 1
2 Hs.432975 RELA 1 E 1
3 Hs.87 RBL1 1 I 1
4 Hs.262476 AMD1 1 M 1
5 Hs.85701 PIK3CA 1 A 13
10075 more rows ...

@maNotes
[1] "C://arrays/designs/CG4.2.Version2.GeneList.txt"

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 51

Step 2: Getting the layout

Of course, we’re still not done; we have to create an
marrayLayout object with the geometry.

> temp <- as.character(cg42@maInfo$Location)
> temp <- temp[length(temp)]
> temp
[1] "D12o14"
> ngr <- which(LETTERS == substring(temp, 1, 1))
> ngc <- as.numeric(substring(temp, 2, 3))
> nsr <- which(letters == substring(temp, 4, 4))
> nsc <- as.numeric(substring(temp, 5, 6))
> cg42Layout <- new(’marrayLayout’,
+ maNgr=ngr, maNgc=ngc,
+ maNsr=nsr, maNsc=nsc,
+ maPlate=factor(cg42@maInfo$Plate))

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 52

Checking the layout

> summary(cg42Layout)
Array layout: Object of class marrayLayout.

Total number of spots: 10080
Dimensions of grid matrix: 4 rows by 12 cols
Dimensions of spot matrices: 15 rows by 14 cols

Currently working with a subset of 10080spots.

Control spots:

Notes on layout:

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 53

How good are the gene annotations?

It is an unfortunate fact of life that the gene annotations for glass
microarrays are rarely as good as the annotations for Affymetrix
microarrays. The main difficulty is that we are dealing with many
different manufacturers and software producers, so there is no
central repository that has a vested interest in keeping the
annotations up to date.

GAL files, for example, can contain varying degrees of
information, varying highly in both the level of detail and the
quality and accuracy of the annotations.

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 54

How good are the gene annotations?

As a general rule, you should try to get annotations that are as
close as possible to describing the actual genetic material placed
on the array. In particular, gene names, gene symbols, or
UniGene cluster IDs are NOT primary identifiers of genomic
material. You want something like:

• an IMAGE clone ID,

• a GenBank sequence identifier,

• or (in the case of long oligo arrays) the actual sequence
spotted on the array.

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



R AND GLASS MICROARRAYS 55

Step 3: Getting the sample information

BioConductor needs a benevolent dictator.

You might think that you already know how to read sample
information into BioConductor. After all, that’s what trhe
phenoData class does, and that’s how we handle this issue with
exprSet or AffyBatch objects. But you’d be wrong.

There’s ALWAYS more than one way to do it.

The marray way is to re-use the marrayInfo class, and so you
can also read a sample information file in using the
read.marrayInfo function that we described just a few slides
ago for gene information. Of course, by this point, you’d probably
be so tired of the whole subject that you’d be thankful that this
lecture (and class-week) are over....

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA


