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Lecture 22: Applied Clustering

• Clustering Methods

• K-Means Clustering
• Partitioning Around Medoids
• Silhouette Widths
• Principal Components
• Principal Coordinates

• Project Normal

• Project Normal Clustering
• Abnormal Behavior
• Problems and Solution
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Review of hierarchical clustering

Last time: we looked at hierarchical clustering of the samples.

Key issues:

• What distance metric (euclidean, correlation, manhattan,
canberra, minkowski) should we use?

• What linkage rule (average, complete, single, ward) should we
use?

• Which clusters should we believe? (bootstrap resampling)

• How many clusters should we believe? (bootstrap)

Is there any reason to believe that a hierarchical structure makes
sense? Today, we’ll look at some other clustering techniques.

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



APPLIED CLUSTERING 3

Simulated data

To test some algorithms, we simulated data with 1000 genes and
5 different sample classes containing different numbers of
samples. Here’s a two-dimensional picture of the truth:
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Hierarchical clusters (correlation; average)

Three of the classes (B, C, D) are mostly correct. The other two
classes are less concentrated.
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K-Means Clustering

Input: A data matrix, X, and the desired number of clusters, K.

Output: For each sample i, a cluster assignment C(i) ≤ K.

Idea: Minimize the within-cluster sum of squares

K∑
c=1

∑
C(i)=c,C(j)=c

N∑
`=1

(xi` − xj`)2

• Algorithm:

1. Make an initial guess at the centers of the clusters.
2. For each data point, find the closest cluster (Euclidean).
3. Replace each cluster center by averaging data points that

are closest to it.
4. Repeat until the assignments stop changing.
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K-Means, Take 1

Perfect clustering! (Circles = starting group centers, X = final
group centers)
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K-Means, Take 2

Oops: bad starting points may mean bad clusters!
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K-Means, Take 3
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Local minima may not be global

K-means can be very sensitive to the choice of centers used as
seeds for the algorithm. The problem is that the algorithm only
converges to a local minimum for the within-cluster sum of
squares, and different runs with randomly chosen centers (which
is the default in the kmeans function in R) can converge to
different local optima. You can see which of these three runs is
better:

> sum(kres1$withinss)
[1] 25706.57
> sum(kres2$withinss)
[1] 25736.84
> sum(kres3$withinss)
[1] 25926.12
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Local minima may not be global

There are two ways around the fact that local minima need not be
global.

One is to find better starting seeds for the algorithm. For
example, start with hierarchical clustering. Then cut the tree into
five branches, and use the average of each branch as the
starting points.

Alternatively, you can run the algorithm with many random seeds,
keeping track of the within-cluster sum of squares:

require(ClassDiscovery)
repeatedKmeans(t(ldata), k=5, nTimes=100)
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Multiple runs of the K-means algorithm

kcent <- sample(n.samples, 5)
kres <- kmeans(t(ldata), t(ldata[,kcent])
withinss <- sum(kres$withinss)
for (i in 1:100) {

tcent <- sample(n.samples, 5)
tres <- kmeans(t(ldata), t(ldata[,tcent]))
print(sum(tres$withinss))
if (sum(tres$withinss) < withinss) {

kres <- tres
kcent <- tcent
withinss <- sum(kres$withinss)

}
}
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Can we use other measures of distance?

The K-means clustering algorithm has another limitation. (This is
not the last one we will consider).

As described, it always uses Euclidean distance as the measure
of dissimilarities between sample vectors. As we saw last time
with hierarchical clustering, there are a large number of possible
distances that we might want to use. Fortunately, a simple
adjustment to the algorithm lets us work with any distance
measure.
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Partitioning Around Medoids (PAM)

Input: Data matrix, X, distance d, number of clusters, K.

Output: For each sample i, a cluster assignment C(i) ≤ K.

Idea: Minimize the within-cluster distance

K∑
c=1

∑
C(i)=c,C(j)=c

d(xi, xj)

• Algorithm:

1. Make an initial guess at the centers of the clusters.
2. For each data point, find the closest cluster.
3. Replace each cluster center by the data point minimizing the

total distance to other members in its cluster.
4. Repeat until the assignments stop changing.
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PAM in R

To use PAM in R, you must load another package:

> require(cluster)
> dist.matrix <- as.dist(1-cor(ldata)/2)
> pamres <- pam(dist.matrix, 5)

Unlike kmeans , the implementation of pamonly lets you specify
the number of clusters you want, not the starting point. It also
apparently always uses the same method to choose the starting
point, so it does not help to run the algorithm multiple times. If
their heuristic chooses a poor starting configuration, there is no
way to fix it.
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PAM results

Not very good on our example data...
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How many clusters are there?

Both kmeans and pam require you to specify the number of
clusters before running the algorithm. In our example, we knew
before we stated that there were five clusters. In real life, we
rarely (if ever) know the number of real clusters before we start.
How do we figure out the correct number of clusters?

One way is to run the algorithm with different values of K, and
then try to decide which methods gives the best results. The
problem that remains is how we measure “best”.
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Silhouette Widths

Kaufman and Rousseeuw (who wrote a book on clustering that
describes pam along with quite a few other methods) recommend
using the silhouette width as a measure of how much individual
elements belong to the cluster where they are assigned. To
compute the silhouette width of the ith object, define

a(i) = average distance to other elements in the cluster

b(i) = smallest average distance to other clusters

sil(i) = (b(i)− a(i))/max(a(i), b(i)).

Interpretation: If sil(i) is near 1, then the object is well clustered.
If sil(i) < 0, then the object is probably in the wrong cluster. If
sil(i) is near 0, then it’s on the border between two clusters.
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PAM : two clusters

> pam2 <- pam(dmat, 2)
> plot(pam2)
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PAM : three clusters

> pam3 <- pam(dmat, 3)
> plot(pam3)
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PAM : four clusters

> pam4 <- pam(dmat, 4)
> plot(pam4)
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PAM : five clusters

> pam5 <- pam(dmat, 5)
> plot(pam5)
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PAM : six clusters

> pam6 <- pam(dmat, 6)
> plot(pam6)
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PAM : seven clusters

> pam7 <- pam(dmat, 7)
> plot(pam7)
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> summary(silhouette(pam2))$avg.width
[1] 0.01938651
> summary(silhouette(pam3))$avg.width
[1] 0.02713564
> summary(silhouette(pam4))$avg.width
[1] 0.02904244
> summary(silhouette(pam5))$avg.width
[1] 0.02875473
> summary(silhouette(pam6))$avg.width
[1] 0.02342055
> summary(silhouette(pam7))$avg.width
[1] 0.01862886

In general, we want to choose the number of clusters that
maximizes the average silhouette width. In this case, that means
4 or 5 clusters.
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Using silhouettes with K-means

The silhouette function knows about pamobjects, making it
relatively easy to use. You can use it with other clustering
routines, but you have to supply the clustering vector and the
distance matrix. For example, here are the results for the best
K-means clustering that we found (as measured by the
within-cluster sum of squares).

> euc.distance <- dist(t(ldata))
> ksil <- silhouette(kres$cluster, euc.distance)
> summary(ksil)$avg.width
[1] 0.02453796

Note that the silhouette width is smaller than the one from PAM
using correlation. However, the silhouette plot suggests that
everything is classified correctly:
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K-means: five cluster silhouette

> plot(ksil)
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Silhouettes with hclust

Looking back at the hierachical clustering, we need to cut eight
branches off (including some singletons) to get down to the
clusters that look real.

> dmat <- as.dist((1-cor(ldata))/2)
> hc <- hclust(dmat, ’average’)
> hsil <- silhouette(cutree(hc, k=8), dmat)
> summary(hsil)$avg.width
[1] 0.08024319

Why does the average silhouette width look so much better for
this method?
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Hierarchical clustering: silhouette with singletons

> plot(hsil)

c© Copyright 2004–2005, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA



APPLIED CLUSTERING 29

The silhouette width

General conclusions: The average silhouette width is only a
crude guide to the number of clusters present in the data. The
silhouette plot seems to be more useful, but requires human
intervention (in the form of “cortical filtering”).
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The Gap statistic

An alternative method for determining the number of clusters
relies on the gap statistic. The idea is to run a clustering
algorithm for different valus of the number K of clusters. Let
W (K) be the within-cluster error. In the case of Euclidean
distance, W (K) is just the within-cluster sum of squares. For
other distance measures, it is the term we minimized in the
description of PAM. Because adding more clusters will always
reduce this error term, W (K) is a decreasing function of K.
However, it should decrease faster when K is less than the true
number and slower when K is greater than the true number.

The gap statistic measures the difference (on the log scale, for
each K) between the observed W (K) and the expected value if
the data were uniformly distributed. One then selects the K with
the largest gap between the observed and expected values.
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Principal Components

You may have wondered how I produced two-dimensional plots of
the simulated data that involved 1000 genes and 53 samples.
The short answer is: I used principal components analysis (PCA).

As we have been doing throughout our discussion of clustering,
we view each sample as a vector x = (x1, . . . , xG) in
G-dimensional “gene space”. The idea behind PCA is to look for
a direction (represented as a linear combination u1 =

∑G
i=1 wixi)

that maximizes the variability across the samples. Next, we find a
second direction u2 at right angles to the first that maximizes
what remains of the variability. We keep repeating this process.
The ui vectors are the principal components, and we can rewrite
each sample vector as a sum of principal components instead of
as a sum of separate gene expression values.
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Data reduction

PCA can be used as a data reduction method. Changing from
the original x-coordinates to the new u-coordinate system doesn’t
change the underlying structure of the sample vectors. However,
it does let us focus on the directions where the data changes
most rapidly. If we just use the first two or three principal
components, we can produce plots that show us as much of the
intrinsic variability in the data as possible.

Warning: even though there is a function in R called princomp
that is supposed to compute principal components, it will not
work in the contect of microarrays. The problem is that
princomp wants to decompose the covariance matrix, which is a
square matrix with size given by the number of genes. That’s
simply too big to manipulate.
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Sample PCA

We have written a version of PCA in R using Singular Value
Decomposition. The first plot of our simulated data was produced
using the following commands:

> spca <- SamplePCA(ldata)
> plot(spca, split=group.factor)

The plots that added the X’s to mark the K-means centers were
produced with:

> plot(spca, split=factor(kres$cluster))
> x1 <- spca@scores[kcent,1] # start circles
> x2 <- spca@scores[kcent,2]
> points(x1, x2, col=2:6, pch=1, cex=2)
> pcak <- predict(spca, t(kres$centers)) # finish X
> points(pcak[,1], pcak[,2], col=2:6, pch=4)
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Principal Coordinates

Using the first few principal components provides a view of the
data that allows us to see as much of the variability as possible.
Sometimes we have a different goal: we’d like to be able to
visualize the samples in a way that does as good a job as
possible of preserving the distances between samples. In
general, this method is called multidimensional scaling (MDS).

The classical form of MDS is also known as principal coordinate
analysis, and is implemented in R by the function cmdscale .

If you look at the resulting graph carefully, you’ll discover that it is
identical to the principal components plot: classical MDS using
Euclidean distance is equivalent to plotting the first few principal
components.
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Euclidean classical MDS = PCA

> euloc <- cmdscale(euc.distance)
> plot(euloc[,1], euloc[,2], pch=16,
+ col=as.numeric(group.factor),
+ xlab=’Coordinate 1’, ylab=’Coordinate 2’)
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Classical MDS with correlation

> loc <- cmdscale(dmat)
> plot(loc[,1], loc[,2], pch=16,
+ col=1+as.numeric(group.factor),
+ xlab=’Coordinate 1’, ylab=’Coordinate 2’)
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Classical MDS with correlation

Usaing the cloud function in the lattice package, we can also
plot the first three principal coordinates:

> require(lattice)
> loc3d <- cmdscale(dmat, k=3)
> pc1 <- loc3d[,1]
> pc2 <- loc3d[,2]
> pc3 <- loc3d[,3]
> cloud(pc3 ˜ pc1 * pc2, pch=16, cex=1.2,
+ col=1+as.numeric(group.factor),
+ screen=list(z=55, x=-70),
+ perspective=FALSE)
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Three-D
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Project Normal

• Eighteen samples

• Six C57BL6 male mice
• Three organs: kidney, liver, testis

• Reference material

• Pool RNA from all eighteen mouse organs

• Replicate experiments on two-color arrays with common
reference

• Four experiments per mouse organ
• Dye swaps: two red samples, two green samples
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Original analysis of Project Normal

Reference: Pritchard, Hsu, Delrow, and Nelson. (2001) Project
normal: defining normal variance in mouse gene expression.
PNAS 98: 13266–13271.

• Print-tip specific intensity dependent loess normalization

• Scale adjusted (using MAD)

• Work with log ratios (experimental/reference)

• Perform F-test for each gene to see if mouse-to-mouse
variance exceeds the array-to-array variance.
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First steps

We chose to process the data using a simple global
normalization (to the 75th percentile) instead of loess
normalization, since we believed that the mixed reference RNA
should have a different distribution of intensities than RNA from a
single organ. We then transformed the intensities in each
channel by computing their base-two logarithm.

Main Question: Can we determine from the project normal data
set which genes are specifically expressed in each of the three
organs?
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Clustering Methods

If we cluster the data, what should we expect to see? Which
clustering method would be most appropriate for a first look at
the data?

• Hierarchical clustering

• Partitioning around medoids

• K-means

• Multidimensional scaling

• Principal components analysis
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Hierarchical clustering

Euclidean distance, average linkage

Back to clustering methods
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Hierarchical clustering

Correlation distance, average linkage

Back to clustering methods
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Partitioning Around Medoids

Euclidean distance, four clusters

Back to clustering methods
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Partitioning Around Medoids

Euclidean distance, five clusters

Back to clustering methods
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Partitioning Around Medoids

Correlation distance, four clusters

Back to clustering methods
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Partitioning Around Medoids

Correlation distance, five clusters

Back to clustering methods
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Partitioning Around Medoids

Correlation distance, six clusters

Back to clustering methods
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K-means

Number of channels in each cluster:

Channel C1 C2 C3 C4
Experiment 4 24 20 24
Reference 28 0 44 0

Organ C1 C2 C3 C4
Kidney 24 24 0 0

Liver 0 0 24 24
Testis 8 0 40 0

Best of 50 runs with four clusters

Back to clustering methods
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K-means

Number of channels in each cluster:

Channel C1 C2 C3 C4 C5
Experiment 4 16 20 8 24
Reference 20 0 44 8 0

Organ C1 C2 C3 C4 C5
Kidney 16 16 0 16 0

Liver 0 0 24 0 24
Testis 8 0 40 0 0

Best of 50 runs with five clusters

Back to clustering methods
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Multidimensional Scaling

Correlation distance, colored to indicate channel

Back to clustering methods
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Multidimensional Scaling

Correlation distance, colored to indicate organ

Back to clustering methods
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Principal components analysis

Euclidean distance, indicating channel and organ.

Back to clustering methods Forward to second PCA
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Abnormal Behavior

Regardless of which exploratory method we use to look at the
data, we see that sometihng strange is happening here.

We might not have noticed this behavior if we had immediately
gone to the log ratios instead of clustering the separate channels.

What might explain the presence of two different kinds of
reference channels? First thought: dye swaps. But this doesn’t
make sense, since then we would expect the experimental
channels to split the same way (giving us eight clusters in total).
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Data merging

• Data was supplied in three files, one each for kidney, liver and
testis.

• Each row in each file contained two kinds of annotations:

1. Location (block, row, and column)
2. Genetic material (IMAGE clone, UniGene ID)

• For our analysis, we merged the data using the annotations of
genetic material.

• As it turns out, the locations did not agree

• So, we reordered data rows and merged on location...
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PCA after merging data on location

Yuck. So why are most of the testis references so weird?

Back to first PCA Forward to third PCA
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Inspired guessing

• When the gene annotations are matched

• Four of the testis reference channels are close to the kidney
reference

• Twenty of the testis reference are close to the liver reference

• When the location annotations are matched

• Kidney, liver, and 4 testis references are close
• The other 20 testis reference are off by themselves

• Conclusion: A data processing error occurred partway through
the testis experiments.
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Principal components, take 3

Finally, the picture we expected to start with!

Back to second PCA
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Every solution creates a new problem

• Solution: After reordering all liver experiments and twenty
testis experiments by location

• Can distinguish betwen the three organs
• The reference samples all cluster together

• New Problem: There are now two competing ways to map from
locations to genetic annotations (one from the kidney data, one
from the liver data). Which one is correct?
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How big is the problem?

• Microarray contains 5304 spots

• Only 3372 (63.6%) spots have UniGene annotations that are
consistent across the files

• So, 1932 (36.4%) spots have ambiguous UniGene annotations
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UniGene Example
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UniGene Example
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Villin Expression
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Definition of abundance

• If the UniGene database entry for “gene expression” says that
the cDNA sources of the clones found in a cluster included
“kidney”, then we will say that the gene is abundant in kidney.

• Analogous definitions obviously apply for liver, testis, or other
organs.
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Abundance by consistency

Abundance All UniGene Consistent Ambiguous
None 409 237 172
Kidney 129 76 53
Liver 284 169 115
Testis 372 231 141
Kidney, Liver 126 69 57
Kidney, Testis 226 146 80
Liver, Testis 960 609 351
All 2789 1835 963
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Combining UniGene abundance with microarray
data

• For each gene

• Let I = (K, L, T ) be the binary vector of its abundance in
three organs as recorded in te UniGene database.

• Let Y = (k, l, t) be the measured log intensity in the three
organs.

• Model using a 3-dimensional multivariate normal distribution

Y |I = N3(µI,ΣI)

• Average replicate experiments from same mouse with same
dye to produce natural triplets of measurements.
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Use consistently annotated genes to fit the model

Abundance µK µL µT

None 2.027 2.129 2.012
Kidney 2.445 1.880 1.822
Liver 1.911 2.909 1.743
Testis 1.734 1.809 2.872
Kidney, Liver 3.282 3.051 1.961
Kidney, Testis 2.410 2.129 2.521
Liver, Testis 2.438 2.563 2.526
All 3.202 3.121 2.958

The estimates support the idea that (UniGene) abundant genes
are expressed at higher levels than (UniGene) “rare” genes.
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Distinguishing between competing sets of
annotations

• Use parameters estiomated from the genes with consistent
annotations

• At the ambiguos spots, compute the log-likelihood of the
observed data for each possible triple of abundance
annotations

• Given a complete set of annotaiosn, sum the log-likelihood
values over all genes

• Log-likelihood that the kidney data file contains the correct
annotations is equal to −52, 241

• Log-likelihood that the liver data file contains the correct
annotations is equal to −60, 183
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Scrambled rows

• Our “inspired guess” earlier was motivated by the idea that the
rows containing the annotations had somehow been reordered.

• We permuted the rows 100 times to obtain empirical p-values
for the observed log-likelihoods

• P(kidney is correct) < 0.01
• P(liver is correct) = 0.57.

• The log-likelihood of the kidney file annotations was not
particularly close to the maximum of −33, 491. This suggest
that we can use the array data to refine the notion of
“abundance” on a gene-by-gene basis.
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