
GS01 0163
Analysis of Microarray Data

Keith Baggerly and Kevin Coombes
Section of Bioinformatics

Department of Biostatistics and Applied Mathematics
UT M. D. Anderson Cancer Center

kabagg@mdanderson.org
kcoombes@mdanderson.org

14 September 2006

INTRODUCTION TO MICROARRAYS 1

Lecture 5: R, Objects and Affymetrix Arrays

• Beyond Matrices

• Bioconductor Packages

• Microarray Data Structures

• Affymetrix Data in BioConductor

• Processing Affymetrix data

• Quantification = summarization

• More about reading Affymetrix data

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 2

Beyond Matrices

We have gone from scalar to vector to matrix, attaching names
as we go, with the goal of keeping associated information
together. So far, we’ve done this with numbers, but we could use
character strings instead:

> letters[1:3]
"a" "b" "c"
> x <- letters[1];
> x <- letters[1:3];
> x <- matrix(letters[1:12],3,4);

but we can’t easily mix data of different modes

> x <- c(1,"a");
> x
"1" "a"

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 3

Mixing Modes in Lists

In R, a list can have components that are of different modes and
even different sizes:

x <- list(teacher="Keith",n.students=14,
grades=letters[c(1:4,6)])

x
$teacher
[1] "Keith"
$n.students
[1] 14
$grades
[1] "a" "b" "c" "d" "f"

Note that we named the components of the list at the same time
that we created it. Many functions in R return answers as lists.

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 4

Extracting Items From Lists

If we want to access the first element of x, we might try using the
index or the name in single brackets:

> x[1]
$teacher
[1] "Keith"
> x["teacher"]
$teacher
[1] "Keith"

These don’t quite work. The single bracket extracts a component,
but keeps the same mode; what we have here is a list of length 1
as opposed to a character string. Two brackets, on the other
hand...

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 5

Extracting Items From Lists

> x[[1]]
[1] "Keith"
> x[["teacher"]]
[1] "Keith"

The double bracket notation can be rather cumbersome, so there
is a shorthand notation involving the dollar sign:

> x$teacher
[1] "Keith"

This method has the advantage that using names keeps the
goals clear.

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 6

Lists with Structure

Now, there are some very common types of structured arrays.
The most common is simply a table, where the rows correspond
to individuals and the columns correspond to various types of
information (potentially of multiple modes). Because we want to
allow for multiple modes, we can construct a table as a list, but
this list has a constraint imposed on it – all of its components
must be of the same length. This is similar in structure to the idea
of a matrix that allows for multiple modes. This structure is built
into R as a data frame .

This structure is important for data import.

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 7

Reading Data Into R

While we can simply type stuff in, or use source() to pull in
small amounts of data we’ve typed into a file, what we really want
to do is to read a big table of data. R has several functions that
allow us to do this, including read.table() , read.delim() ,
and scan() .

We can experiment by using some of the files that we generated
in dChip for the first HWK.

We could load the sample info file, and the list of filtered genes.
Then we could use the sample info values to suggest how to
contrast the expression values in the filtered gene table. Let’s try
this.

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 8

Importing our dChip Data

I exported all of the dChip quantifications to a single file. The file
has a header row, with columns labeled “probe set”, “gene”,
“Accession”, “LocusLink”, “Description” and then “N01” and so
on, 1 column per sample. We can read this into R as follows:

> singh.dchip.data <-
read.delim(c("../SinghProstate/Singh_",

"Prostate_dchip_expression.xls"));
> class(singh.dchip.data)
[1] "data.frame"
> dim(singh.dchip.data)
[1] 12625 108

The number of columns is a bit odd...

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 9

More on Importing

If we invoke help(read.delim) , help pops up for
read.table . The former is a special case of the latter. Let’s
take a look at bits of the usage lines for each:

read.table(file, header = FALSE, sep = "",
quote = "\"", dec = ".", row.names, col.names,
as.is = FALSE, na.strings = "NA", colClasses = NA,
nrows = -1, skip = 0, check.names = TRUE,
fill = !blank.lines.skip, strip.white = FALSE,
blank.lines.skip = TRUE, comment.char = "#")

read.delim(file, header = TRUE, sep = "\t", quote=
"\"", dec=".", fill = TRUE, ...)

Note the default function arguments!

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 10

Speeding Up Import

Reading the documentation suggests a few speedups:

• we can use comment.char = "" , speeding things up

• we can use nrows = 12626 , for better memory usage

• we could shift to using scan (use help!).

singh.dchip.data <-
read.delim(c("../SinghProstate/Singh_Prostate’’

,"_dchip_expression.xls"),
comment.char = "",
nrows = 12626

);

is indeed faster!

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 11

Is This What We Want?

All of the expression data is now nicely loaded in a data frame.
But this data frame really breaks into two parts quite nicely –
gene information, and expression values. If we split these apart,
then the expression value matrix has 102 columns,
corresponding to the sample info entries quite nicely.

singh.annotation <- singh.dchip.data[,1:5];
singh.dchip.expression <-

as.matrix(singh.dchip.data[,6:107]);
rownames(singh.dchip.expression) <-

singh.annotation$probe.set;

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 12

Grab the Sample Info Too

What are the columns in my sample info file?

scan name sample name type
run_date_block cluster_block

N01__normal N01 N 2 2

(the last two you might not have).

singh.sample.info <-
read.delim("../SinghProstate/sample_info_2.txt",

comment.char = "",
nrows = 103

);

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 13

Test Something Interesting

In the first homework, we saw that the data split into two clusters
that didn’t agree well with the tumor/normal split. It might very
well be that there was some type of batch effect in addition to the
biological split of interest.

Can we factor the batch effect out? If we know what the batch
split is, we can first fit a model using just the batches, subtract the
fit off, and then fit a model using the tumor/normal split on what
remains.

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 14

Tumor vs Normal

singh.probeset.lm <-
lm(singh.dchip.expression[

singh.annotation$probe.set
== "31539_r_at",]

˜ singh.sample.info$type
);

singh.probeset.anova <-
anova(singh.probeset.lm);

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 15

Tumor vs Normal (cont)

> singh.probeset.anova
Analysis of Variance Table

Response: singh.dchip.expression[
singh.annotation$probe.set == "31539_r_at",]

Df Sum Sq Mean Sq F value Pr(>F)
$type 1 71.42 71.42 5.3748 0.02247 *
Residuals 100 1328.81 13.29

Signif. codes: 0 ’ *** ’ 0.001 ’ ** ’ 0.01 ’ * ’ 0.05 ’.’ 0.1 ’ ’ 1

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 16

T vs N, After Blocking

singh.probeset.lm.full <-
lm(singh.dchip.expression[

singh.annotation$probe.set
== "31539_r_at",]

˜ singh.sample.info$cluster.block
+ singh.sample.info$type

);
singh.probeset.anova.full <-

anova(singh.probeset.lm.full);

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 17

T vs N, After Blocking (cont)

> singh.probeset.anova.full
Analysis of Variance Table

Response: singh.dchip.expression[
singh.annotation$probe.set == "31539_r_at",]

Df Sum Sq Mean Sq F value Pr(>F)
$block 1 404.97 404.97 40.6399 5.85e-09 ***
$type 1 8.75 8.75 0.8779 0.3511
Residuals 99 986.51 9.96

Signif. codes: 0 ’ *** ’ 0.001 ’ ** ’ 0.01 ’ * ’ 0.05 ’.’ 0.1 ’ ’ 1

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 18

Hasn’t Someone Done This?

Other people have thought about the data structures that might
be natural for microarray data. In particular, a lot of these
functions are collected at Bioconductor.

Let’s try to grab some of the packages and functions that will help
with this type of analysis.

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 19

Bioconductor Packages

You will need the following packages from the Bioconductor web
site. Use the items “Select repositories...” and “Install
package(s)...” on the “Packages” menu to get them.

reposTools : Repository tools for R

Biobase : Base functions for BioConductor

affy : Methods for Affymetrix oligonucleotide arrays

affydata : Affymetrix data for demonstration purposes

affypdnn : Probe dependent nearest neighbor (PDNN) for the
affy package

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

http://www.bioconductor.org
http://www.bioconductor.org

INTRODUCTION TO MICROARRAYS 20

Bioconductor Widget Packages

In order to use some of the graphical tools that make it easier to
read Affymetrix microarray data and construct sensible objects
describing the experiments, you will also need the following
packages from the Bioconductor web site.

tkWidgets : R based Tk widgets

widgetTools : Creates an interactive tcltk widget

DynDoc : Dynamic document tools

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

http://www.bioconductor.org

INTRODUCTION TO MICROARRAYS 21

Microarray Data Structures

Recap: What information do we need in order to analyze a
collection of microarray experiments?

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 22

Experiment/Sample Information

In even the simplest experimental designs, where we want to find
out which genes are differentially expressed between two types
of samples, we at least have to be told which samples are of
which type. In more complicated experimental designs, we may
be interested in a number of additional factors. For example, in a
study comparing cancer patients to healthy individuals, we may
want to record the age and sex of the study subjects. In animal
experiments, there may be a variety of different treatments that
have to be recorded.

The R object that holds this kind of information is a data.frame .
Conceptually, a data.frame is just a two-dimensional table. By
convention, they are arranged so that each row corresponds to
an experimental sample and each column corresponds to one of
the interesting factors.

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 23

Example of a data.frame

Array Age Sex Status
a1 41 M cancer
a2 64 F cancer
a3 56 M healthy
a4 48 F healthy

Data frames are particularly useful for this purpose in R, because
they can hold textual factors as well as numeric ones. For most
array sudies, it is best to create a table of the interesting
information and store it in a separate file. If you create the table
in a spreadsheeet program (like Excel), you should store it as a
text file in “tab-separated-value” format. That is, each row holds
the information from one experiment, and column entries are
separated by tab characters.

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 24

Phenotypes

You can create a data frame in R from a file in tab-separate-value
format using the read.table command. (You can also create
them directly, as illustrated later.)

The Biobase package in BioConductor views the sample
information as an extension of the notion of a data frame, which
they call a phenoData object. In their conception, this object
contains the “phenotype” information about the samples used in
the experiment. The extra information in a phenoData object
consist of optional “long” labels that can be used to identify the
covariates (or factors) in the columns.

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 25

Mock data

Let’s create a fake data set. We pretend we have measured 200
genes in 8 experimental samples, the first four of which are
healthy and the last four are cancer patients.

> fake.data <- matrix(rnorm(8 * 200), ncol=8)
> sample.info <- data.frame(
+ spl=paste(’A’, 1:8, sep=’’),
+ stat=rep(c(’healthy’, ’cancer’), each=4)

At this point, we have a matrix containing fake expression data
and a data fame containing two columns (“spl” and “stat”). Let’s
create a phenoData object with more intelligible labels:

> pheno <- new("phenoData", pData=sample.info,
+ varLabels=list(spl=’Sample Name’,

stat=’Cancer Status’))

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 26

> pheno
phenoData object with 2 variables and 8 cases
varLabels

spl : Sample Name
stat : Cancer Status

> pData(pheno)
spl stat

1 A1 cancer
2 A2 cancer
3 A3 cancer
4 A4 cancer
5 A5 healthy
6 A6 healthy
7 A7 healthy
8 A8 healthy

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 27

ExprSets

The object in BioConductor that links together a collection of
expression data and its associated sample information is called
an exprSet .

> my.experiments <- new("exprSet",
+ exprs=fake.data, phenoData=pheno)
> my.experiments
Expression Set (exprSet) with

200 genes
8 samples

phenoData object with 2 variables and 8 cases
varLabels

spl : Sample Name
stat : Cancer Status

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 28

Warning

If you create a real exprSet this way, you should ensure that the
columns of the data matrix are in exactly the same order as the
rows of the sample information data frame; the software has no
way of verifying this property without your help.

You’ll also need to put together something that describes the
genes used on the microarrays.

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 29

Where is the gene information?

The exprSet object we have created so far lacks an essential
piece of information: there is nothing to describe the genes. One
flaw in the design of BioConductor is that it allows you to
completely separate the biological information about the genes
from the expression data. (This blithe acceptance of the
separation is surprisingly common among analysts.)

Each exprSet includes a slot called annotation , which is a
character string containing the name of the environment that
holds the gene annotations.

We’ll return to this topic later to discuss how to create these
annotation environments.

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 30

Optional parts of an exprSet

In addition to the expression data (exprs) and the sample
information (phenoData), each exprSet includes several
optional pieces of information:

annotation name of the gene annotation enviroment

se.exprs matrix containing standard errors of the expression
estimates

notes character string describing the experiment

description object of class MIAME describing the experiment

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 31

Affymetrix Data in BioConductor

For working with Affymetrix data, BioConductor includes a
specialized kind of exprSet called an AffyBatch . To create an
AffyBatch object from the CEL files in the current directory, do
the following:

> library(affy) # load the affy library
> my.data <- ReadAffy() # read CEL data

You may have to start by telling R to use a different working
directory to find the CEL files; the command to do this is setwd .

> setwd("/my/celfiles") # point to the CEL files

Paths in R are separated by forward slashes (/) not backslashes
(\); this is a common source of confusion.

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 32

Demonstration data

Note: If you are trying to follow along and have not yet obtained
some CEL files, the affydata package includes demonstration
data from a dilution experiment. You can load it by typing

> library(affydata)
> data(Dilution)

These commands will create an AffyBatch object called
Dilution that you can explore.

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 33

Peeking at what’s inside

BioConductor will automatically build an object with the correct
gene annotations for the kind of array you are using the first time
you access the data; this may take a while, since it downloads all
the information from the internet. So, don’t be surprised if it takes
a few minutes to display the response to the command

> Dilution
AffyBatch object
size of arrays=640x640 features (12805 kb)
cdf=HG_U95Av2 (12625 affyids)
number of samples=4
annotation=hgu95av2

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 34

Looking at the experimental design

You can see what the experiments are by looking at the
phenotype information.

> phenoData(Dilution)
phenoData object with 3 variables and 4 cases
varLabels

liver: amount of liver RNA hybridized to array in micrograms
sn19: amount of central nervous system RNA hybidized to array
scanner: ID number of scanner used

> pData(Dilution)
liver sn19 scanner

20A 20 0 1
20B 20 0 2
10A 10 0 1
10B 10 0 2

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 35

A first look at an array

> image(Dilution[,1])

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 36

A summary view of four images

> boxplot(Dilution, col=1:4)

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 37

The distribution of feature intensities

> hist(Dilution, col=1:4, lty=1)

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 38

Examining individual probesets

The affy package in BioConductor includes tools for extracting
individual probe sets from a complete AffyBatch object. To get
at the probe sets, however, you need to be able to refer to them
by their “name”, which at present means their Affymetrix ID.

> geneNames(Dilution)[1:3]
[1] "100_g_at" "1000_at" "1001_at"
> random.affyid <- sample(geneNames(Dilution), 1)
> # random.affyid <- ’34803_at’
> ps <- probeset(Dilution, random.affyid)[[1]]

The probeset function returns a list of probe sets; the
mysterious stuff with the brackets takes the first element from the
list (which only had one...).

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 39

A probeset profile in four arrays

> plot(c(1,16), c(50, 900), type=’n’,
+ xlab=’Probe’, ylab=’Intensity’)
> for (i in 1:4) lines(pm(ps)[,i], col=i)

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 40

Examining individual probesets

Let’s add the mismatch probes to the graph:

> for (i in 1:4) lines(pm(ps)[,i], col=i, lty=2)

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 41

PM − MM

> plot(c(1,16), c(-80, 350), type=’n’,
+ xlab=’Probe Pair’, ylab=’PM - MM)
> temp <- pm(ps) - mm(ps)
> for (i in 1:4) lines(temp[,i], col=i)

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 42

RNA degradation

Individual (perfect match) probes in each probe set are ordered
by location relative to the 5’ end of the targeted mRNA molecule.
We also know that RNA degradation typically starts at the 5’ end,
so we would expect probe intensities to be lower near the 5’ end
than near the 3’ end.

The affy package of BioConductor includes functions to
summarize and plot the degree of RNA degradation in a series of
Affymetrix experiments. These methods pretend that something
like “the fifth probe in an Affymetrix probe set” is a meaningful
notion, and they average these things over all probe sets on the
array.

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 43

Visualizing RNA degradation

> degrade <- AffyRNAdeg(Dilution)
> plotAffyRNAdeg(degrade)

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 44

Processing Affymetrix data

BioConductor breaks down the low-level processing of Affymetrix
data into four steps. The design is highly modular, so you can
choose different algorithms at each step. It is highly likely that the
results of later (high-level) analyses will change depending on
yopur choices at these steps.

• Background correction

• Normalization (on features)

• PM-correction

• Summarization

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 45

Background correction

The list of available background correction methods is stored in a
variable:

> bgcorrect.methods
[1] "mas" "none" "rma" "rma2"

So there are four methods:

none Do nothing

mas Use the algorithm from MAS 5.0

rma Use the algorithm from the current version of RMA

rma2 Use the algorithm from an older version of RMA

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 46

Background correction in MAS 5.0

MAS 5.0 divides the microarray (more precisely, the CEL file) into
16 regions. In each region, the intensity of the dimmest 2% of
features is used to define the background level. Each probe is
then adjusted by a weighted average of these 16 values, with the
weights depending on the distance to the centroids of the 16
regions.

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 47

Background correction in RMA

RMA takes a very different approach to background correction.
First, only PM values are adjusted, the MM values are not
changed at all. Second, they try to model the distribution of PM
intensities statistically as a sum of

• exponential signal with mean λ

• normal noise with mean µ and variance σ2 (truncated at 0 to
avoid negatives).

If we observe a signal X = x at a PM feature, we adjust it by

E(s|X = x) = a + b
φ(a/b)− φ((x− a)/b)

Φ(a/b) + Φ((x− a)/b)− 1

where b = σ and a = s− µ− λσ2.

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 48

Comparing background methods

> d.mas <- bg.correct(Dilution[,1], "mas")
> d.rma <- bg.correct(Dilution[,1], "rma")
> bg.with.mas <- pm(Dilution[,1]) - pm(d.mas)
> bg.with.rma <- pm(Dilution[,1]) - pm(d.rma)

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 49

> summary(bg.with.mas)
Min. :74.53
1st Qu.:93.14
Median :94.35
Mean :94.27
3rd Qu.:95.80
Max. :97.67
> summary(bg.with.rma)
Min. : 72.4
1st Qu.:113.7
Median :114.9
Mean :112.1
3rd Qu.:114.9
Max. :114.9

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 50

Difference in background estimates

On this array, RMA gives slightly larger background estimates,
and gives estimates that are more nearly constant across the
array. The overall differences can be displayed in a histogram.

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 51

Quantification = summarization

I’m going to avoid talking about normalization and PM correction
for the moment, and jump ahead to summarization. As we have
explained previously, this step is the critical final component in
analyzing Affymetrix arrays, since it’s the one that combines all
the numbers from the PM and MM probe pairs in a probe set into
a single number that represents our best guess at the expression
level of the targeted gene.

The available summarization methods, like the other available
methods, can be obtained from a variable.

express.summary.stat.methods
[1] "avgdiff" "liwong" "mas"

"medianpolish" "playerout"

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 52

Including the PDNN method

The implementation of the PDNNmethod is contianed in a
separate package. When you load the package libary, it updates
the list of available methods.

> library(affypdnn)
registering new summary method ’pdnn’.
registering new pmcorrect method ’pdnn’

and ’pdnnpredict’.
> express.summary.stat.methods
[1] "avgdiff" "liwong" "mas"
[4] "medianpolish" "playerout" "pdnn"

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 53

expresso

The recommended way to put together all the steps for
processing Affymetrix arrays in BioConductor is with the function
expresso . Here’s an example that blocks everything except the
summarization:

> tempfun <- function(method) {
+ expresso(Dilution, bg.correct=FALSE,
+ normalize=FALSE, pmcorrect.method="pmonly",
+ summary.method=method)
+ }
> ad <- tempfun("avgdiff") # MAS4.0
> al <- tempfun("liwong") # dChip
> am <- tempfun("mas") # MAS5.0
> ap <- tempfun("pdnn") # PDNN
> ar <- tempfun("medianpolish") # RMA

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 54

M-versus-A plots

Instead of plotting two similar things on the usual x and y axes,
plot the average ((x + y)/2) along the horizontal axis and the
difference (y − x) along the vertical axis. The affy package
includes a function called mva.pairs to make it easier to
generate these plots. We’re going to use this to compare the
different quantification/summary methods.

> temp <- data.frame(exprs(ad)[,1], exprs(al)[,1],
+ exprs(am)[,1], 2ˆexprs(ar)[,1])
> dimnames(temp)[[2]] <- c(’Mas4’, ’dChip’,
+ ’Mas5’, ’RMA’)

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 55

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 56

More about reading Affymetrix data

The BioConductor affy package includes a graphical interface
to make it easier to read in Affymetrix data and contruct
AffyBatch objects.

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 57

Affy Widgets

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 58

Affy Widgets

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 59

Affy Widgets

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 60

Affy Widgets

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 61

Affy Widgets

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 62

Affy Widgets

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 63

Affy Widgets

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 64

Affy Widgets

c© Copyright 2004–2006 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

