GS01 0163
Analysis of Microarray Data

Keith Baggerly and Kevin Coombes
Section of Bioinformatics
Department of Biostatistics and Applied Mathematics
UT M. D. Anderson Cancer Center

kabagg@mdanderson.org
kcoombes@mdanderson.org

26 October 2006
Lecture 17: R and Glass Microarrays

- Microarray Data Structures
- marray data structures
- limma data structures
- Toward a modular and efficient design
- Quantifying Glass Microarrays
- Getting down to business
The threefold way

Bioinformatics

Biology

Statistics

Computer Science
Microarray Data Structures

Recall from Lecture 5 on R and Affymetrix arrays:
Recall: Affymetrix analysis in BioConductor

- `exprSets` combine expression data and sample information
 - Can be linked in an efficient way to gene information

- `AffyBatch` objects hold the raw data
 - Easy to construct from a directory of CEL files
 - Gene annotations updated automatically
 - Useful quality control tools

- Structured, modular preprocessing with `exprso`:
 - Background correction
 - Normalization
 - PM correction
 - Summarization
Glass arrays in BioConductor

BioConductor includes two different package bundles to deal with two-color glass microarrays: `marray` and `limma`.

Neither package uses the notion of an `exprSet`.

In both cases, the design seems to be less flexible and less modular than the tools for working with Affymetrix arrays.
marray data structures

The marray package uses four basic classes to hold the data from a collection of microarray experiments.

marrayInfo : holds sample information or gene information

marrayLayout : describes the geometry of the array

marrayRaw : holds the raw array data

marrayNorm : holds array data after normalization

The primary processing function is maNorm, which allows you to try a limited number of normalization methods.
Sample or Gene Information

In `marray`, the same kind of object (`marrayInfo`) is used to hold either sample information or gene information. This object is a data frame with extra information attached (like the `phenoData` objects in an `exprSet`). The extra information includes longer descriptive labels for the columns and a character string with any notes you’d like to attach to the object.

When used to describe genes, the rows correspond to spots on the array and columns to gene annotations.

When used to describe samples, the rows correspond to microarrays and columns give information about the samples. In particular, the columns should identify the samples used in both the Cy3 and Cy5 channels.
Things I don’t like about marrayInfo

- No gene-specific or sample-specific tools. Can only tell how to interpret the object in context.

- Forced combining of Cy3 and Cy5 sample information on the same row of the sample information

Although this is peeking ahead, it’s also worth noting that every experimental data set (marrayRaw or marrayNorm) must contain its own copy of the gene-information marrayInfo object. This is a terrible design decision. It wastes space (on disk or in memory) and is impossible to maintain. If the annotations must be updated, you have to hunt down innumerable copies and update all of them.
Geometry of glass microarray designs

As we have seen previously, glass microarrays are typically laid out in a hierarchical layout, containing a rectangle of grids, each of which is a rectangle of spots. Also, each grid is spotted on the array by a different physical pin.
The `marray` package uses an `marrayLayout` object to describe the geometry using five numbers:

- **`maNgr`**: number of grid rows
- **`maNgc`**: number of grid columns
- **`maNsrr`**: number of spot rows
- **`maNscc`**: number of spot columns
- **`maNspots`**: number of spots

It is perhaps odd that they store the number of spots, since it seems to me that it should always be easily computable in terms of the other four parameters.
marrayLayout slots

The marrayLayout object may also include three additional vectors:

maSub : a logical vector: are we currently interested in this spot?

maPlate : which plate did the robot get this spot from?

maControls : what kind of material is spotted here?

Metaphors appear to be mixed here: the maPlate and maControls vectors belong to the array design, and not to the specific analysis. The maSub object, however, seems to be an analysis-specific filter to let you focus on specific genes.
marrayLayout methods

They include methods to compute the following quantities, but they do not store them in the object:

maPrintTip : vector of print tips for the spots
maGridCol : vector of grid column locations
maGridRow : vector of grid row locations
maSpotCol : vector of spot column locations
maSpotRow : vector of spot row locations
More complaints

The design of \texttt{marrayLayout} is a mess.

Every \texttt{marrayRaw} and \texttt{marrayNorm} gets its own copy. This design has serious maintenance problems. Because they realize this mistake, they use methods to compute the vector locations. (Their explanation: storing them takes too much space.) A drawback of computing them, however, is that this assumes that the order of the data rows is always the same; however, different quantification packages do not produce the same row order when they quantify the spots.
marrayRaw slots

Raw expression data from glass microarrays is stored as an marrayRaw object, which contains:

- Four matrices of raw data \((\text{maRf}, \text{maGf}, \text{maRb}, \text{maRb})\) with red (R) and green (G) foreground (f) and background (b) estimates.

- An optional matrix \((\text{maW})\) of spot quality weights.

- \text{maLayout}, containing the array layout

- \text{maGnames}, containing the gene information

- \text{maTargets}, containing the sample information

As pointed out earlier, including copies of the layout and gene information is inefficient and hard to maintain.
marrayRaw methods

maA: vector of log intensities

maM: vector of log ratios

maLR: vector of background-corrected red log intensities

maLG: vector of background-corrected red log intensities

Note that there is no option to perform any form of background correction other than simply subtracting the values supplied by the image quantification software.
marrayNorm slots

Processed expression data from glass microarrays is stored as an `marrayNorm` object. These contain copies of the `maW`, `maLayout`, `maGnames`, and `maTargets` objects from the raw source data. In place of the raw measurements, these objects contain

- **maA**: matrix of average log intensities
- **maM**: matrix of log ratios
- **maMloc**: localization normalization values
- **maMscale**: scale normalization values
Getting from `marrayRaw` to `marrayNorm`

Once we have an object in hand containing raw microarray measurements, we can simply *coerce* them into normalized values. This will do no pre-processing, simply computing the M and A values from the raw data.
Normalization methods

In most cases, we want to normalize the data using `maNorm` (which is a wrapper around the more general function `maNormMain`). The basic function call looks like

> maNorm(my.raw.data, norm=method)

The normalization method must be specified as a character string, which must be one of the following: “none”, “median”, “loess”, “twoD”, “printTipLoess”, or “scalePrintTipMAD”. Unlike the approach taken with the Affymetrix arrays, there is no variable containing a list of normalization methods and no obvious way to add new methods. The more general method is extensible, but the way to extend it is poorly documented.
The \textit{marray} data cube

Fixed, hard-coded set of metrics (Rf, Gf, Rb, Gb, W).
limma data structures

The limma package in BioConductor provides a different set of tools for glass microarrays.

RGList : raw microarray data as a list of arrays containing

- Four matrices, \(R, G, Rb, Gb \), containing measurements.
- Optional components **weights**, **printer**, **genes**, **targets**.

MAList : processed microarray data as a similar list with M and A components

Note that this is even more wasteful of space by making innumerable copies of the gene information...
The \textit{limma} data cube
limma normalization methods

The *limma* package has its own normalization routines (since they use different data structures than *marray*). Each has hard-coded option lists that are too painful to enumerate (or contemplate).

- `normalizeBetweenArrays`
- `normalizeWithinArrays`
- `normalizeForPrintOrder`
- `normalizeRobustSpline`
- `normalizeMedians`
- `normalizeQuantiles`
Toward a modular and efficient design

In case you hadn’t noticed, I’m considerably less happy with the BioConductor analysis of glass microarrays than with their analysis of Affymetrix arrays. To review my main complaints:

- The data structures waste space
- The \texttt{marray} structures make it hard to combine array sets.
- It’s not easy to plug in new processing algorithms (normalization or otherwise) to compare and contrast them.
- The designs do not use the \texttt{exprSet} structure, so it is hard to write high-level analysis tools that work on both kinds of arrays.
An easily extended data cube
A few design principles

- Array design should be stored in exactly one place.
 - Annotations can be updated easily.
 - No wasted space storing duplicate copies.
- Must be possible to read data from different quantification software and different array designs.
- Processing must be modular.
 - Easy to figure out what methods are available.
 - Easy to add new methods.
- After processing, should get an exprSet.
How should the two channels be handled?

Two possibilities

1. Each “sheet” is a slide

<table>
<thead>
<tr>
<th>Slide</th>
<th>Cy3 Name</th>
<th>Cy5 Name</th>
<th>Cy3 Status</th>
<th>Cy5 Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>RefMix</td>
<td>T1</td>
<td>Reference</td>
<td>Cancer</td>
</tr>
<tr>
<td>A2</td>
<td>N1</td>
<td>RefMix</td>
<td>Healthy</td>
<td>Reference</td>
</tr>
</tbody>
</table>

2. Each “sheet” is a separate channel

<table>
<thead>
<tr>
<th>Slide</th>
<th>Channel</th>
<th>Sample Name</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Cy3</td>
<td>RefMix</td>
<td>Reference</td>
</tr>
<tr>
<td>A1</td>
<td>Cy5</td>
<td>T1</td>
<td>Cancer</td>
</tr>
<tr>
<td>A2</td>
<td>Cy3</td>
<td>N1</td>
<td>Healthy</td>
</tr>
<tr>
<td>A2</td>
<td>Cy5</td>
<td>RefMix</td>
<td>Reference</td>
</tr>
</tbody>
</table>
The processing pipeline

It should be possible to plug different algorithms in for each step in the pipeline.

It should be possible to add additional steps.

Ideally, it should be possible from the final object to reconstruct the processing history (which will be needed for the methods section of an article based on the analysis!).

© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly
Quantifying Glass Microarrays

So far, I have avoided describing how glass array data gets from the image quantification files into R and/or BioConductor.

The problem: There are lots of different software packages for image quantification. Unlike the Affymetrix world (where everything starts with the DAT and CEL files), this implies that there are lots of different formats that need to be understood by a general microarray analysis package.

In particular, when you construct an object to hold microarray data, you not only need to know the array design (i.e., the geometry and the gene annotations for each spot), but you need to know what software quantified the images.
Microarray Quantification Packages

There are a variety of programs available for quantifying arrays, including

- **Free:**
 - UCSF Spot
 - TIGR SpotFinder

- **Commercial:**
 - ArrayVision (Imaging Research, Inc.)
 - ImaGene (BioDiscovery, Inc.)
 - MicroVigene (Vigene Tech, Inc.)
Microarray Quantification Packages

Most manufacturers (e.g., Agilent or the Axon GenePix) of microarray scanners also supply quantification software.

- The critical issue to note is that every quantification package uses its own:
 - methods for finding, segmenting, and quantifying spots
 - scheme for labeling the spots
 - order for reporting the spots
 - names for the measurements it reports.

The only thing they have in common is that they are all able to export the data in tab-separated-values format, with rows representing spots and columns representing measurements (like location, foreground intensity, background intensity, etc.).
Quantifying Glass Microarrays

In this lecture, we are going to assume that we have somehow managed to get our hands on a set of quantification files from a batch of glass microarrays, and that we have determined what the individual columns mean. Our next goal is to figure out how to get this data into R and BioConductor so we can start doing something useful with it.
Reading data into \texttt{marray}

In \texttt{marray}, they handle this problem by using a variety of “read” functions:

- \texttt{read.GenePix}
- \texttt{read.Spot}
- \texttt{read.SMD}
- \texttt{read.marrayRaw}
Reading data into limma

In limma, there is a single “read” function

```r
> read.maimages(files, source=SOMETHING)
```

This function uses hard-coded text strings to support different quantification packages; source can be one of

- agilent
- arrayvision
- imagene
- quantarray
- genepix
- smd
- spot
Better data input?

Neither \texttt{marray} nor \texttt{limma} makes it easy to add new quantification packages. With \texttt{marray}, you presumably write another function of the form \texttt{read.my.quants}, duplicating much of the existing code to coerce the input data into the desired format. In \texttt{limma}, you can’t change the hard-coded strings, but you can take advantage of the many optional arguments of \texttt{read.maimages} to construct a custom data reader.
Better data input?

Conceptually, the problem has a simple form. Quantification data typically arrives as text files in tab-separated values format. Different manufacturers have different names for the columns that we care about. All we need to know is

- How to map the manufacturer’s names to our standard names
- How many header lines to skip
- Whether the file contains one or two channels

If we had a description of the quantifier, we could use a single extensible function like

```r
> my.stuff <- read.arrays(files, quantifier)
```
Notes on our own methods

After teaching this course for the first time last year, I implemented the “pipeline” processing idea. Code for this is contained in the PreProcess package that is available on our web site at

http://bioinformatics.mdanderson.org/Software/OOMPA

I’m still in the middle of implementing a generic microarray quantification reader...
Getting down to business

An overview of the process:

1. Create an object that knows how to map spot label identifiers to gene information.

2. Create an object that understands the geometry of the array.

3. Create an object that records the sample information.

4. Load the raw data from all the arrays.

5. Process (background correct, normalize, summarize) the raw data.

6. Get to the fun part of the analysis...
A sample GenePix GAL file

The Axon GenePix scanner software creates “.gal” files that describe the geometry of a glass microarray, along with the information that describes the gene probes at each spot.
The GenePix GAL file format

Axon describes the GAL file format on their web site:

http://www.moleculardevices.com/pages/software/gn_genepix_file_formats.html#gal

This is a special case of “Axon text format”. The first line of the file (ATF 1) is required, and identifies the file format. The second line (20 5) is also required. It tells us, in this case, that there are 20 additional header lines before the main data starts, and that there are 5 columns of data. The third line (Type=GenePix ArrayList V1.0) is also required and identifies the type of GAL file format. Since they have only ever defined one version of the file format, this should be the same in all GAL files.
Block-heads

The next set of header lines is optional. In this case, they have chosen to tell us (BlockCount=16) that there are 16 blocks (or subgrids) contained on the array. The next line (BlockType=0) encodes the fact that these are rectangular blocks. The URL=⋯ line gives an optional web site for more information.

Note that, even though the blocks=subgrids are themselves laid out in a rectangular pattern, the format at this point does not tell us what that pattern is. Axon numbers the blocks starting with number 1 in the upper left corner, marching across one row at a time before moving down.
Block descriptions

Next, each block is described by a line of the form "Block1= 500, 500, 100, 24, 180, 21, 180"

Each line contains 7 comma separated values describing the block. The first two entries give the X, Y position (in microns) of the top left corner of the block. The third value is the diameter of each spot in microns. The fourth value is the number of rows, and the fifth value is the spacing between spots in each row. The final two numbers are the number of columns and the spacing between spots in a column. Note that the geometry of the blocks can be inferred from the set of their X, Y positions.

Finally, the file contains a tab-separated set of information describing the spot locations and corresponding probe information.
Reading GAL files

The `marray` package includes a function that knows how to read GAL files, called, cleverly enough, `read.Galfile`. The simplest use is:

```r
> demo.gal <- read.Galfile('demo.gal',
>   path='c://arrays/designs')
```

Warning: the following obvious obvious attempt to read a GAL file somewhere other than the current directory will NOT work:

```r
read.Galfile('c://arrays/designs/demo.gal')
```

Here the problem is that `read.Galfile uses path='.'` as the default value and always prepends the path to the file name.
Reading GAL files

After correctly reading the GAL file, the resulting object is a list:

```r
> class(demo.gal)
[1] "list"
> attributes(demo.gal)
$names
[1] "gnames"  "layout"  "neworder"
> class(demo.gal$gnames)
[1] "marrayInfo"
> class(demo.gal$layout)
[1] "marrayLayout"
> class(demo.gal$neworder)
[1] "integer"
```
Reading GAL files

Since the GAL file contains the gene annotations (which have now been put into an \texttt{marrayInfo} object) and the geometry (put into an \texttt{marrayLayout} object), the function is able to extract both pieces of information. Thus, when working with array quantifications from Axon, you can accomplish the first two steps in a single function.
Other formats for gene information

ArrayVision produces quantification files that include spot identifiers with absolutely no knowledge of the gene information:
Other formats for gene information

In this case, the core lab that produced the data also supplied a separate file with the gene annotations:
Other formats for gene information

This example illustrates a more typical situation.

1. Neither of these text files explicitly describes the geometry of the array.

2. Neither file includes separate columns to identify the ‘grid and subgrid row and column positions; these are embedded in the spot labels or locations.

3. The data file uses “Spot labels” of the form A – 1 : A – 1, while the annotations file describes the same “Location” in the form Alal1.
Reading the gene information

When we have a simple tab-separated file (like this one) containing the gene information, we can use it to produce a marrayInfo object.

```r
> location <- 'C://arrays/designs'
> filename <- 'CG4.2.Version2.GeneList.txt'
> cg42 <- read.marrayInfo(file.path(location, filename), info.id=1:9, labels=6)
```

The `info.id` argument is optional; it is a list of the indices of the columns of the gene info file to include. The `labels` argument is also optional; it is the index of the column to use for labeling the gene. In our example, column 6 contains the gene symbols.
Checking the results

> cg42
An object of class "marrayInfo"
@maLabels
[1] "" "RELA" "RBL1" "AMD1" "PIK3CA"
10075 more elements ...

@maInfo

<table>
<thead>
<tr>
<th>Location</th>
<th>IMAGE</th>
<th>Accession</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A1a1</td>
<td>753234 AC002404</td>
</tr>
<tr>
<td>2</td>
<td>A1a2</td>
<td>771220 BC011603</td>
</tr>
<tr>
<td>3</td>
<td>A1a3</td>
<td>249856 NM_002895</td>
</tr>
<tr>
<td>4</td>
<td>A1a4</td>
<td>149013 NM_001634</td>
</tr>
<tr>
<td>5</td>
<td>A1a5</td>
<td>345430 NM_006218</td>
</tr>
<tr>
<td>UniGene</td>
<td>Gene Symbol</td>
<td>Plate</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2 Hs.432975</td>
<td>RELA</td>
<td>1</td>
</tr>
<tr>
<td>3 Hs.87</td>
<td>RBL1</td>
<td>1</td>
</tr>
<tr>
<td>4 Hs.262476</td>
<td>AMD1</td>
<td>1</td>
</tr>
<tr>
<td>5 Hs.85701</td>
<td>PIK3CA</td>
<td>1</td>
</tr>
</tbody>
</table>

10075 more rows ...

@maNotes

Step 2: Getting the layout

Of course, we’re still not done; we have to create an `marrayLayout` object with the geometry.

```r
> temp <- as.character(cg42@maInfo$Location)
> temp <- temp[length(temp)]
> temp
[1] "D12o14"
> ngr <- which(LETTERS == substring(temp, 1, 1))
> ngc <- as.numeric(substring(temp, 2, 3))
> nsr <- which(letters == substring(temp, 4, 4))
> nsc <- as.numeric(substring(temp, 5, 6))
> cg42Layout <- new('marrayLayout',
+ maNgr=ngr, maNgc=ngc,
+ maNsr=nsr, maNsc=nsc,
+ maPlate=factor(cg42@maInfo$Plate))
```
Checking the layout

> summary(cg42Layout)
Array layout: Object of class marrayLayout.

Total number of spots: 10080
Dimensions of grid matrix: 4 rows by 12 cols
Dimensions of spot matrices: 15 rows by 14 cols

Currently working with a subset of 10080 spots.

Control spots:

Notes on layout:
How good are the gene annotations?

It is an unfortunate fact of life that the gene annotations for glass microarrays are rarely as good as the annotations for Affymetrix microarrays. The main difficulty is that we are dealing with many different manufacturers and software producers, so there is no central repository that has a vested interest in keeping the annotations up to date.

GAL files, for example, can contain varying degrees of information, varying highly in both the level of detail and the quality and accuracy of the annotations.
How good are the gene annotations?

As a general rule, you should try to get annotations that are as close as possible to describing the actual genetic material placed on the array. In particular, gene names, gene symbols, or UniGene cluster IDs are NOT primary identifiers of genomic material. You want something like:

- an IMAGE clone ID,
- a GenBank sequence identifier,
- or (in the case of long oligo arrays) the actual sequence spotted on the array.
Step 3: Getting the sample information

BioConductor needs a benevolent dictator.

You might think that you already know how to read sample information into BioConductor. After all, that’s what the `phenoData` class does, and that’s how we handle this issue with `exprSet` or `AffyBatch` objects. But you’d be wrong.

There’s ALWAYS more than one way to do it.

The `marray` way is to re-use the `marrayInfo` class, and so you can also read a sample information file in using the `read.marrayInfo` function that we described just a few slides ago for gene information. Of course, by this point, you’d probably be so tired of the whole subject that you’d be thankful that this lecture (and class-week) are over....