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Lecture 19: Linear Models for Two-Color
Microarrays

• XML is your friend

• Converting to limma

• Fitting data with a linear model

• Making tables

• Comments on Replication
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XML is Your Friend

Last time, we started looking at six two-color glass arrays that had been

selected from a larger study. The data from the full study was available

at GEO in two formats: SOFT and MINiML. By the end of the previous

class, we had loaded the SOFT format, but noted that it took more than

an hour-and-a-half, which seemed rather excessive, even for R.

We had also loaded the actual data from the MINiML format, but could

not make sense of it because all the descriptions were inside an XML file.

We installed the XML package, and after some adventures, also installed

the separate, external libxml2 library from Igor Zlatkovic that we needed

in order to be able to parse XML files. We also had to edit the xml file to

remove a couple of characters that were not properly UTF-8 encoded.
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Creating the XML parse tree

We begin by trying to figure out how to parse the XML file that describes

all of this data. First we load the library and create the parse tree.

> library(XML)

> xmlsource <- file.path("GSE1039", "GSE1039_family2.xml")

> mytree <- xmlTreeParse(xmlsource)

> rm(xmlsource)
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The Root Node

The root of the tree identifies this as a MINiML document, which

contains 35 child nodes.

> root <- xmlRoot(mytree)

> xmlName(root)

[1] "MINiML"

> xmlSize(root)

[1] 35
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A Child Node

The first child node describes one of the contributors (Michael E.

Salazar) of the data set.

> root[[1]]

<Contributor iid="contrib1">

<Person>

<First>Michael</First>

<Middle>E.</Middle>

<Last>Salazar</Last>

</Person>

<Phone>(415) 514-4371</Phone>

<Laboratory>Functional Genomics Core Laboratories</Laboratory>

<Organization>University of California, San Francisco</Organization>
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<Address>

<Line>1550 Fourth Street, RM 545</Line>

<City>San Francisco</City>

<State>CA</State>

<Zip-Code>94158</Zip-Code>

<Country>USA</Country>

</Address>

<Web-Link>arrays.ucsf.edu</Web-Link>

</Contributor>
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Kinds of Child Nodes

We can easily determine the type of all the nodes. Note that there are

only five kinds of nodes.

> as.character(xmlSApply(root, xmlName))

[1] "Contributor" "Contributor" "Contributor"

[4] "Contributor" "Database" "Platform"

[7] "Platform" "Sample" "Sample"

[10] "Sample" "Sample" "Sample"

[13] "Sample" "Sample" "Sample"

[16] "Sample" "Sample" "Sample"

[19] "Sample" "Sample" "Sample"

[22] "Sample" "Sample" "Sample"

[25] "Sample" "Sample" "Sample"
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[28] "Sample" "Sample" "Sample"

[31] "Sample" "Sample" "Sample"

[34] "Sample" "Series"

© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data



Introduction to Microarrays 9

A Platform Node

The important objects for analyzing the data are Platforms and Samples.

Both of these contain references to“external data”, which is to say, those

files we read in above. We start by looking more closely at one of the

platforms.

> plat1 <- root[[6]]

> as.character(xmlSApply(plat1, xmlName))

[1] "Status" "Title"

[3] "Accession" "Technology"

[5] "Distribution" "Organism"

[7] "Manufacturer" "Manufacture-Protocol"

[9] "Description" "Contributor-Ref"

[11] "Contributor-Ref" "Contact-Ref"

[13] "Data-Table"
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What Kind of Platform?

From the accession and the title, we see that the GEO identifier GPL976

represents the UCSF version 4 human oligo array.

> plat1["Accession"][[1]]

<Accession database="GEO">GPL976</Accession>

> plat1["Title"][[1]]

<Title>UCSF 4Hs Human v.2 Oligo Array</Title>
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Data Tables as External Data

At this point, we do not really care about most of the platform

information, but we do care about the data table. As you can see, this

contains a lot of“Column” information and an“External-Data”entry. The

external data gives a file reference that will not be immediately useful to

us, since the path describes where the data is stored at the GEO web site.

The actual file name (but not the directories) is the same as the name of

the corresponding file that we extracted from the tarball.

> plat1DT <- plat1["Data-Table"][[1]]

> as.character(xmlSApply(plat1DT, xmlName))

[1] "Column" "Column" "Column"

[4] "Column" "Column" "Column"

[7] "Column" "Column" "Column"

[10] "Column" "Column" "External-Data"
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Column Header Information is in the XML File

> plat1DT[[5]]

<Column position="5">

<Name>Operon_ID</Name>

<Description>Operon assigned Oligo ID</Description>

</Column>

> xmlValue(plat1DT["External-Data"][[1]])

[1] "/am/ftp-geo/DATA/MINiML/by_series/GSE1039/GPL976-tbl-1.txt"
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A Sample Node

Samples have a similar structure:

> samp1 <- root[[8]]

> as.character(xmlSApply(samp1, xmlName))

[1] "Status" "Title"

[3] "Accession" "Type"

[5] "Channel-Count" "Channel"

[7] "Channel" "Description"

[9] "Data-Processing" "Platform-Ref"

[11] "Contact-Ref" "Supplementary-Data"

[13] "Data-Table"
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A Sample Node

> samp1["Accession"][[1]]

<Accession database="GEO">GSM16665</Accession>

> samp1["Title"][[1]]

<Title>Hs_004_187_2</Title>
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Extracting Information from the Sample Nodes

Next, we create an object that identifies which of the child nodes of the

root object represent samples. We can use this to immediately extract

interesting sample information.

> idxSamp <- which(xmlSApply(root, xmlName) ==

+ "Sample")

> ArrayID <- sapply(idxSamp, function(x) {

+ xmlValue(root[[x]]["Title"][[1]])

+ })

> GSMID <- sapply(idxSamp, function(x) {

+ xmlValue(root[[x]]["Accession"][[1]])

+ })

> PlatformID <- sapply(idxSamp, function(x) {

+ xmlAttrs(root[[x]]["Platform-Ref"][[1]])
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+ })

> data.frame(GSMID, ArrayID, PlatformID)[1:10,

+ ]

GSMID ArrayID PlatformID

1 GSM16665 Hs_004_187_2 GPL976

2 GSM16675 Hs_004_186_2 GPL976

3 GSM16679 Hs_004_235 GPL976

4 GSM16680 Hs_004_189_1 GPL976

5 GSM16681 Hs_004_188 GPL976

6 GSM16685 6Hs.094 GPL978

7 GSM16686 6Hs.195.1 GPL978

8 GSM16687 6Hs.168 GPL978

9 GSM16688 6Hs.169.1 GPL978

10 GSM16689 6Hs.166 GPL978
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Sample Descriptions Contain Important
Unstructured Data

Now we take a look at the“Description”field for one of the samples.

> xmlValue(samp1["Description"][[1]])

"Total RNA from beta7 cells isolated from human PBMC

(CD4+ and CD45RA- population)\nPatient sex: female;

Patient age: 30\nSubject ID# 001\n2 rounds amplification

(Ambion's MessageAmp aRNA Kit)"

In this case, the contributors have structured the“Description”of each

sample so that it contains potentially useful information such as the

gender, age, and ID of each patient. The design of MINiML does not

give a structured way to include patient covariates. Nevertheless, we can

still extract the relevant information from the descriptions.
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> d <- sapply(idxSamp, function(x) {

+ xmlValue(root[[x]]["Description"][[1]])

+ })

> click <- regexpr("sex: ", d)

> clack <- regexpr("male; ", d)

> Gender <- substring(d, click + 5, clack + 3)

> click <- regexpr("Patient age: ", d)

> Age <- as.numeric(substring(d, click + 13,

+ click + 15))

> click <- regexpr("Subject ID# ", d)

> Subject <- paste("S", substring(d, click +

+ 12, click + 14), sep = "")

> rm(click, clack)
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Reviewing the Patient Characteristics by Array

> data.frame(PlatformID, Subject, Age, Gender)

PlatformID Subject Age Gender

1 GPL976 S001 30 female

2 GPL976 S001 30 female

3 GPL976 S006 27 female

4 GPL976 S009 23 female

5 GPL976 S009 23 female

6 GPL978 S001 30 female

7 GPL978 S001 30 female

8 GPL978 S003 25 female

9 GPL978 S003 25 female

10 GPL978 S004 37 female

11 GPL978 S004 37 female
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12 GPL978 S006 27 female

13 GPL978 S006 27 female

14 GPL978 S006 27 female

15 GPL978 S006 27 female

16 GPL978 S007 45 male

17 GPL978 S007 45 male

18 GPL978 S007 45 male

19 GPL978 S007 45 male

20 GPL978 S008 28 male

21 GPL978 S008 28 male

22 GPL978 S010 31 female

23 GPL978 S010 31 female

24 GPL978 S011 28 female

25 GPL978 S011 28 female

26 GPL978 S011 28 female

27 GPL978 S011 28 female
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Why Do We Need Both Platforms?

We see that samples S001 and S006 were run on both platforms; sample

S009 was only run on the older platform, and all the other samples were

only run on the newer platform. Thus, we expect eventually to only use

the data from the newer platform for our analysis.
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Channel Information

We also know that these were two color experiments, and that the β7+
and β7− cell populations from the same individual were used in the two

channels of a single slide. So, we still need to extract this channel

information. Looking to future applications, we have tried to write this

code so it applies to different numbers of channels.

> idxChan <- which(xmlSApply(samp1, xmlName) ==

+ "Channel")

> for (i in 1:length(idxChan)) {

+ assign(paste("Source", i, sep = ""), sapply(idxSamp,

+ function(x, i) {

+ xmlValue(root[[x]][[idxChan[i]]]["Source"][[1]])

+ }, i))

+ }
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> rm(i)

> data.frame(Subject, Source1, Source2)

Subject Source1 Source2

1 S001 beta7- beta7+

2 S001 beta7+ beta7-

3 S006 beta7- beta7+

4 S009 beta7- beta7+

5 S009 beta7+ beta7-

6 S001 beta7- beta7+

7 S001 beta7- beta7+

8 S003 beta7+ beta7-

9 S003 beta7- beta7+

10 S004 beta7+ beta7-

11 S004 beta7- beta7+

12 S006 beta7- beta7+
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13 S006 beta7+ beta7-

14 S006 beta7+ beta7-

15 S006 beta7- beta7+

16 S007 beta7- beta7+

17 S007 beta7+ beta7-

18 S007 beta7+ beta7-

19 S007 beta7- beta7+

20 S008 beta7+ beta7-

21 S008 beta7- beta7+

22 S010 beta7+ beta7-

23 S010 beta7- beta7+

24 S011 beta7+ beta7-

25 S011 beta7- beta7+

26 S011 beta7+ beta7-

27 S011 beta7- beta7+
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Which Files Contain the Data?

The final information that we need for each sample is the name of the

external file that contains the data. As mentioned above, this is the last

component of the value of the“External-Data”entry in the“Data-Table”.

So, we can extract that piece with the following code.

> dt <- sapply(idxSamp, function(x) {

+ root[[x]]["Data-Table"]

+ })

> File <- sapply(dt, function(x) {

+ y <- x["External-Data"][[1]]

+ z <- xmlValue(y)

+ w <- strsplit(z, "/")[[1]]

+ w[length(w)]

+ })
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The File Mapping is Straightforward

> data.frame(Subject, GSMID, File)[1:9, ]

Subject GSMID File

1 S001 GSM16665 GSM16665-tbl-1.txt

2 S001 GSM16675 GSM16675-tbl-1.txt

3 S006 GSM16679 GSM16679-tbl-1.txt

4 S009 GSM16680 GSM16680-tbl-1.txt

5 S009 GSM16681 GSM16681-tbl-1.txt

6 S001 GSM16685 GSM16685-tbl-1.txt

7 S001 GSM16686 GSM16686-tbl-1.txt

8 S003 GSM16687 GSM16687-tbl-1.txt

9 S003 GSM16688 GSM16688-tbl-1.txt
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Putting the Sample Information Together

Next, we assemble all the information into a single data frame, and throw

away the copies of the individual pieces that we no longer need.

> sampleInfo <- data.frame(File, ArrayID, PlatformID,

+ GSMID, Subject, Age, Gender, Source1, Source2)

> rm(File, ArrayID, PlatformID, GSMID, Age, Gender,

+ Subject, Source1, Source2)
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The Data Table

It is now time to look at the rest of the data table. As with the platform

example above, the data table for each sample contains a bunch of

column entries and one external data reference. Here is what a column

entry looks like.

> dt[[1]][[1]]

<Column position="1">

<Name>ID_REF</Name>

<Description>the unique identifier of the feature derived from the Array List.</Description>

</Column>
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Column Entries in the XML File

As you can see, the column entry contains an integer attribute that

defines the position of the column, a“Name”that can be used as the

column header, and an (optional)“Description”that allows us to interpret

the column. The next block of code extracts the column names for each

sample.

> sampColNames <- sapply(dt, function(dt1) {

+ idxCol <- which(xmlSApply(dt1, xmlName) ==

+ "Column")

+ posn <- as.numeric(xmlSApply(dt1, xmlAttrs)[idxCol])

+ if (any(diff(posn) != 1))

+ stop("missing column names")

+ name <- as.character(xmlSApply(dt1, function(x) {

+ xmlValue(x[[1]])
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+ })[idxCol])

+ if (any(is.na(name)))

+ stop("empty column name")

+ name

+ })

> as.integer(sapply(sampColNames, length))

[1] 78 78 78 78 78 44 44 44 44 44 44 44 44 44 44 44 44

[18] 44 44 44 44 44 44 44 44 44 44

Notice that the tables have different numbers of columns, corresponding

exactly to the two different platforms that were used for the experiments.
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Reading the Actual Data

Now we can use the file names and column header information to read in

the external data (i.e., the actual quantifications). This entire operation

took about three minutes on my computer, which is several orders of

magnitude faster than processing the SOFT files of the same data set

with GEOquery.
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> home <- "GSE1039"

> for (i in 1:nrow(sampleInfo)) {

+ fn <- file.path(home, as.character(sampleInfo[i,

+ "File"]))

+ vn <- as.character(sampleInfo[i, "GSMID"])

+ print(paste("Reading", vn, "from", fn))

+ temp <- read.table(fn, header = FALSE,

+ sep = "\t", quote = "", comment.char = "")

+ colnames(temp) <- sampColNames[[i]]

+ assign(vn, temp)

+ }

> rm(i, vn, fn, temp)

> rm(d, dt, idxSamp, idxChan, samp1, sampColNames,

+ plat1, plat1DT)
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Parsing the Platform Information

The next block of code extracts the information describing the two

platforms.

> idxPlat <- which(xmlSApply(root, xmlName) ==

+ "Platform")

> Title <- sapply(idxPlat, function(x) {

+ xmlValue(root[[x]]["Title"][[1]])

+ })

> GSMID <- sapply(idxPlat, function(x) {

+ xmlValue(root[[x]]["Accession"][[1]])

+ })

> dt <- sapply(idxPlat, function(x) {

+ root[[x]]["Data-Table"]

+ })
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> File <- sapply(dt, function(x) {

+ y <- x["External-Data"][[1]]

+ z <- xmlValue(y)

+ w <- strsplit(z, "/")[[1]]

+ w[length(w)]

+ })

> platformInfo <- data.frame(GSMID, Title, File)

> rm(File, Title, GSMID)

> platformInfo

GSMID Title File

1 GPL976 UCSF 4Hs Human v.2 Oligo Array GPL976-tbl-1.txt

2 GPL978 UCSF 6Hs Human v.2 Oligo Array GPL978-tbl-1.txt

We now get the corresponding column names, and then read the external

files containing the gene information for each platform.
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> platColNames <- lapply(dt, function(dt1) {

+ idxCol <- which(xmlSApply(dt1, xmlName) ==

+ "Column")

+ posn <- as.numeric(xmlSApply(dt1, xmlAttrs)[idxCol])

+ if (any(diff(posn) != 1))

+ stop("missing column names")

+ name <- as.character(xmlSApply(dt1, function(x) {

+ xmlValue(x[[1]])

+ })[idxCol])

+ if (any(is.na(name)))

+ stop("empty column name")

+ name

+ })
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> for (i in 1:nrow(platformInfo)) {

+ fn <- file.path(home, as.character(platformInfo[i,

+ "File"]))

+ vn <- as.character(platformInfo[i, "GSMID"])

+ print(paste("Reading", vn, "from", fn))

+ temp <- read.table(fn, header = FALSE,

+ sep = "\t", quote = "", comment.char = "")

+ colnames(temp) <- platColNames[[i]]

+ assign(vn, temp)

+ }

> rm(i, vn, fn, temp)

> rm(dt, idxPlat, platColNames)
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Converting to limma

We now have to convert the raw files (which have been loaded into R)

into the RGList data structure needed by the limma package. We start

by loading the package.

> require(limma)

[1] TRUE

> library(marray)
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CrossCut: A Utility Function

Because the data structures used by limma cut across the raw files

produced by the quantifications, we are going to write a function that

extracts them based on the column name.

> crossCut <- function(sampleNames, columnName) {

+ temp <- lapply(sampleNames, function(x,

+ cn) {

+ data <- eval(as.name(x))

+ data[, cn]

+ }, columnName)

+ temp <- as.matrix(as.data.frame(temp))

+ colnames(temp) <- sampleNames

+ temp

+ }
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The Four Basic Limma Components

The GEO web page for this data set asserts (indirectly) that channel 1 =

F635 = Cy5 = Red. You can also get this information from the

descriptions of the columns in the sample data table entries. We need

that information to make sure we later match“R”with“Source1”.

> isGPL978 <- sampleInfo[, "PlatformID"] == "GPL978"

> si <- as.character(sampleInfo[isGPL978, "GSMID"])

> R <- crossCut(si, "F635 Mean")

> G <- crossCut(si, "F532 Mean")

> Rb <- crossCut(si, "B635 Median")

> Gb <- crossCut(si, "B635 Median")
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Limma Lets Us Keep Other Components in a List

> other <- list(FPixels = crossCut(si, "F Pixels"),

+ BPixels = crossCut(si, "B Pixels"), Rsd = crossCut(si,

+ "F635 SD"), Gsd = crossCut(si, "F532 SD"),

+ Rbsd = crossCut(si, "B635 SD"), Ggsd = crossCut(si,

+ "B532 SD"))

> myData <- new("RGList", list(R = R, G = G,

+ Rb = Rb, Gb = Gb, other = other, genes = GPL978,

+ printer = getLayout(GPL978)))

We like to clean up after ourselves:

> rm(R, Rb, G, Gb, other, si)

> rmlist <- c(as.character(sampleInfo[, "GSMID"]),

+ as.character(platformInfo[, "GSMID"]))

© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data



Introduction to Microarrays 41

> rm(list = rmlist)
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Normalizing in Limma

The default for nomralizing data in limma is to use print-tip loess

normalization on each array separately. By default, this function also

performs local background subtraction before normalizing.

> normData <- normalizeWithinArrays(myData)
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Fitting Data with a Linear Model

> b7 <- rep(1, sum(isGPL978))

> b7[sampleInfo[isGPL978, "Source1"] == "beta7-"] <- -1

> LMres <- lmFit(normData, design = b7)

Okay, what did we just do?

lmFit is the main workhorse function of the limma package, and it fits

LInear Models to MicroArrays. But what is a linear model?

y = β0 + β1x1 + β2x2 + . . . + ε
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Inside LMres

What numbers are being played with here?

> class(LMres)

[1] "MArrayLM"

attr(,"package")

[1] "limma"

> slotNames(LMres)

[1] ".Data"

Surprise! While this is an object of type“MArrayLM”, its contents are

contained in a simple data frame. So, what things do we have here?
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Fitted Numbers

> length(LMres)

[1] 23184

> LMres[1, ]

An object of class "MArrayLM"

$coefficients

[,1]

1 -0.02271092

$stdev.unscaled

[,1]

1 0.2294157
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$sigma

[1] 0.7898411

$df.residual

[1] 18

$cov.coefficients

[,1]

[1,] 0.04545455

$pivot

[1] 1

$method

[1] "ls"
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$design

[1] -1 -1 1 -1 1

17 more rows ...

$genes

ID Block Column Row Operon_ID GB_ACC Unigene

1 1 1 1 1 H200000297 NM_002557 1154

Description

1 oviductal glycoprotein 1, 120kDa (mucin 9, oviductin)

Symbol

1 OVGP1

Sequence

1 AAAGGTGACTGTCCCCTCCAGAAACATATCAGTCACCCCTGAAGGGCAGACTATGCCTTTAAGAGGGGA

SPOT_ID

1
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$Amean

1

5.869181

$contrasts

[,1]

[1,] 1
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Behind the Curtain, 1

> normData$M[1, 1:12]

GSM16685 GSM16686 GSM16687 GSM16688

NA -0.18146738 0.12383032 0.07016037

GSM16689 GSM16690 GSM16691 GSM16692

-0.37034080 -0.04895584 0.56779109 0.89993210

GSM16693 GSM16694 GSM16695 GSM16699

1.10683670 -0.31239358 -0.20244255 -0.76691763

These are (some of) the log ratios that we have available for this gene.
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> mean(normData$M[1, ], na.rm = TRUE)

[1] -0.02925766

> mean(normData$M[1, ] * LMres[1, ]$design, na.rm = TRUE)

[1] -0.02271092

This is the coeff value!

So, why are there NAs in the M field? Why do we need to multiply by the

design vector? What do the 1’s and -1’s indicate?

© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data



Introduction to Microarrays 51

Behind the Curtain, 2

This is ”sigma”:

> sqrt(var(normData$M[1, ] * LMres[1, ]$design,

+ na.rm = T))

[,1]

[1,] 0.7898411

This is the number of valid reads:

> 1/LMres[1, ]$stdev.unscaled^2

[,1]

1 19
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The lmFit call is summarizing the individual M values according in order

to highlight a specified contrast. By changing the design matrix, different

contrasts can be seen, and tested for.
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Testing Significance

> LMresEB <- eBayes(LMres)

So, what do we get? (long list)

> slotNames(LMresEB)

[1] ".Data"

> summary(LMresEB)

Length Class Mode

coefficients 23184 -none- numeric

stdev.unscaled 23184 -none- numeric

sigma 23184 -none- numeric
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df.residual 23184 -none- numeric

cov.coefficients 1 -none- numeric

pivot 1 -none- numeric

method 1 -none- character

design 22 -none- numeric

genes 11 data.frame list

Amean 23184 -none- numeric

df.prior 1 -none- numeric

s2.prior 1 -none- numeric

var.prior 1 -none- numeric

proportion 1 -none- numeric

s2.post 23184 -none- numeric

t 23184 -none- numeric

p.value 23184 -none- numeric

lods 23184 -none- numeric

F 23184 -none- numeric
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F.p.value 23184 -none- numeric
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Making Tables

At this point, we have some test statistic values and associated p-values.

The test-stat values were computed by borrowing strength across the

genes available on the array to get more stable estimates of“null

variation”, so we have“moderated”t-tests as opposed to the plain vanilla

variety.

Still, given these, we would like to extract a small number of them and

report them in a fairly illustrative fashion.

> shortTable <- topTable(LMresEB, number = 10,

+ resort.by = "M")
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What Do We Get?

> shortTable[9:10, ]

ID Block Column Row Operon_ID GB_ACC Unigene

10667 10667 23 20 2 H200002092 AK056276 12251

3152 3152 7 2 13 H200012024 X68742 439320

Description Symbol

10667 similar to BcDNA:GH11415 gene product LOC151963

3152 integrin, alpha 1 ITGA1

Sequence

10667 GTTTTGGTGTGGACTCATGGCAAGCTGGTGTTTAAGAGGTCAGGAGGCCTGCTGATCTTTCAAAGGACA

3152 GAGCTTGCTATTCAAATATCCAAAGATGGGCTACCGGGCAGAGTGCCATTATGGGTCATCCTGCTGAGT

SPOT_ID M A t

10667 0.8438729 9.259563 9.099822

3152 -1.0599022 6.969965 -10.951647
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P.Value adj.P.Val B

10667 2.482815e-09 5.756157e-06 11.12088

3152 1.033582e-10 4.064987e-07 13.78709

Hey, integrin made it to the list!
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The Full Table...

> table2html(shortTable, disp = "file")
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NULL
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...Rest of The Full Table

Why are there two forms of p-value? And what is B?
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What is Going On?

They report both raw p-values and p-values that are adjusted for multiple

testing (how?). The adjusted p-values can reach 1 when there are only a

few samples.

The value B is the“log odds”that the gene is differentially expressed – if

the value of B is 0.59, then the odds that the gene is differentially

expressed are exp(0.59) = 1.803 to 1, and the probability of differential

expression is 1.803/(1.803 + 1) = 0.643. With log odds of 11, the

probability is greater than 99.9%.
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Is this the Right Contrast?

Not quite. Leading question – why were there at least two arrays run for

each patient?

Dye Swaps.

There may be a dye effect present, and it may be possible to account for

this. This requires adjusting the design matrix.

> design <- cbind(Dye = 1, b7)

> LMres2 <- lmFit(normData, design)

> LMres2EB <- eBayes(LMres2)

> shortTable2 <- topTable(LMres2EB, adjust = "fdr",

+ number = 10, resort.by = "M")

> table2html(shortTable2, filename = "GeneList2.html",

+ disp = "file")
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Accounting for Dye...

> table2html(shortTable2, disp = "file");

The table changes a lot...
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Is it what they used in the paper?

Not quite. There, they also decided to not subtract background, with the

result that they did not have to deal with those pesky NA values.

They also dealt with several replicates per person. This can be

accomodated in lmFit by defining a more extensive model matrix.

The general lesson here is that the answers that we get change rather

drastically as we change the nature of the question being asked.

This is addressed in considerable detail in Chapter 23 of Gentleman et al

on limma by Gordon Smyth. We will revisit this in later lectures.
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Comments on Replication

Why do we need to treat replicates differently than other samples?

They’re not measuring“independent”quantities. If we measure 10

replicates from a sick person and 10 replicates from a healthy person,

then contrasting these 20 arrays, we’re still contrasting just one person

with another. Replications in the form of dye-swaps, however, is still

useful in that it allows us to preclude certain biases from affecting our

results.
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An Example

(adapted from Smyth’s chapter)

Let’s say that we have two patients that we want to compare with two

controls. How many possible pairwise combinations are there?

Here, there are 8: 2 controls * 2 patients * 2 dye orderings.

Now, what we really want to say something about is the difference

between disease states: avg disease - avg control.

This in turn is given by

(D1 + D2)/2− (C1 + C2)/2

But how do we get these?
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Levels of Contrasts

These are average levels for each individual, so that the results for one

individual do not dominate the results by simply being present in more of

the samples.

These average levels can be estimated, using an appropriately defined

design matrix.

We can lay things out more precisely.
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What Goes Where

> fakeSamples <- read.table("fakeSamples.txt",header=T)

> fakeSamples

FileName Cy3 Cy5

1 F1.gpr D1 C1

2 F2.gpr D1 C2

3 F3.gpr D2 C1

4 F4.gpr D2 C2

5 F5.gpr C1 D1

6 F6.gpr C2 D1

7 F7.gpr C1 D2

8 F8.gpr C2 D2

Coming up with the design is fairly easy, for one relative to all of the

others
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The Model Matrix

> design <- modelMatrix(fakeSamples, ref="D1")

> design

C1 C2 D2

1 1 0 0

2 0 1 0

3 1 0 -1

4 0 1 -1

5 -1 0 0

6 0 -1 0

7 -1 0 1

8 0 -1 1

+1 if the sample is in Cy5, -1 if it is in Cy3.
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Fit the Model and Contrast

> design <- cbind(Dye = 1, design);

> fakeFit <- lmFit(fakeMA, design);

Given things that are directly estimable, define the contrast of interest in

terms of the values found, and fit the contrast.

> contrast.matrix <- makeContrasts(

DvsC = (D2/2) - ((C1+C2)/2),

levels = design)

> fakeFitCont <- contrasts.fit(fakeFit,

contrast.matrix)

> fakeFitContEB <- eBayes(fakeFitCont)
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Things We Glossed Over, 1

How did we normalize the data?

We made a call to normalizeWithinArrays, but what does that do?

By default, this deals with print-tip loess, but there are two things to

consider here. First, print-tip loess makes stronger assumptions that loess.

Ratios from each print tip are assumed to have the same distributions,

and this is a dangerous assumption if the allocation of clones to plates is

nonrandom. Spots grouped by function may be brighter.

© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: Analysis of Microarray Data



Introduction to Microarrays 73

Things We Glossed Over, 2

The second aspect of normalization that’s a bit more difficult in the

initial analysis is the question of how to deal with multiple array layouts.

I would tend to use some type of print-tip or spatial loess within each

array to correct for overall trends, and then use quantile normalization to

line up the ratios for genes spotted on both platforms.
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