GS01 0163 Analysis of Microarray Data

Keith Baggerly and Kevin Coombes Section of Bioinformatics Department of Biostatistics and Applied Mathematics UT M. D. Anderson Cancer Center kabagg@mdanderson.org kcoombes@mdanderson.org

2 November 2006

Lecture 19: Linear Models for Two-Color Microarrays

- XML is your friend
- Converting to limma
- Fitting data with a linear model
- Making tables
- Comments on Replication

XML is Your Friend

Last time, we started looking at six two-color glass arrays that had been selected from a larger study. The data from the full study was available at GEO in two formats: SOFT and MINiML. By the end of the previous class, we had loaded the SOFT format, but noted that it took more than an hour-and-a-half, which seemed rather excessive, even for R.

We had also loaded the actual data from the MINiML format, but could not make sense of it because all the descriptions were inside an XML file.

We installed the XML package, and after some adventures, also installed the separate, external libxml2 library from Igor Zlatkovic that we needed in order to be able to parse XML files. We also had to edit the xml file to remove a couple of characters that were not properly UTF-8 encoded.

Creating the XML parse tree

We begin by trying to figure out how to parse the XML file that describes all of this data. First we load the library and create the parse tree.

- > library(XML)
- > xmlsource <- file.path("GSE1039", "GSE1039_family2.xml")</pre>
- > mytree <- xmlTreeParse(xmlsource)</pre>
- > rm(xmlsource)

The Root Node

The root of the tree identifies this as a MINiML document, which contains 35 child nodes.

- > root <- xmlRoot(mytree)</pre>
- > xmlName(root)
- [1] "MINiML"
- > xmlSize(root)

[1] 35

A Child Node

The first child node describes one of the contributors (Michael E. Salazar) of the data set.

> root[[1]]

```
<Contributor iid="contrib1">

<Person>

<First>Michael</First>

<Middle>E.</Middle>

<Last>Salazar</Last>

</Person>

<Phone>(415) 514-4371</Phone>

<Laboratory>Functional Genomics Core Laboratories</Laborator

<Organization>University of California, San Francisco</Organ
```

<Address>

<Line>1550 Fourth Street, RM 545</Line>

<City>San Francisco</City>

<State>CA</State>

<Zip-Code>94158</Zip-Code>

<Country>USA</Country>

</Address>

<Web-Link>arrays.ucsf.edu</Web-Link>

</Contributor>

Kinds of Child Nodes

We can easily determine the type of all the nodes. Note that there are only five kinds of nodes.

> as.character(xmlSApply(root, xmlName))

[1]	"Contributor"	"Contributor"	"Contributor"
[4]	"Contributor"	"Database"	"Platform"
[7]	"Platform"	"Sample"	"Sample"
[10]	"Sample"	"Sample"	"Sample"
[13]	"Sample"	"Sample"	"Sample"
[16]	"Sample"	"Sample"	"Sample"
[19]	"Sample"	"Sample"	"Sample"
[22]	"Sample"	"Sample"	"Sample"
[25]	"Sample"	"Sample"	"Sample"

[28]	"Sample"	"Sample"	"Sample"
[31]	"Sample"	"Sample"	"Sample"
[34]	"Sample"	"Series"	

A Platform Node

The important objects for analyzing the data are Platforms and Samples. Both of these contain references to "external data", which is to say, those files we read in above. We start by looking more closely at one of the platforms.

- > plat1 <- root[[6]]
- > as.character(xmlSApply(plat1, xmlName))
 - [1] "Status"
 - [3] "Accession"
 - [5] "Distribution"
 - [7] "Manufacturer"
 - [9] "Description"
- [11] "Contributor-Ref"
- [13] "Data-Table"

"Title" "Technology" "Organism" "Manufacture-Protocol" "Contributor-Ref" "Contact-Ref"

What Kind of Platform?

From the accession and the title, we see that the GEO identifier GPL976 represents the UCSF version 4 human oligo array.

> plat1["Accession"][[1]]

<Accession database="GEO">GPL976</Accession>

> plat1["Title"][[1]]

<Title>UCSF 4Hs Human v.2 Oligo Array</Title>

Data Tables as External Data

At this point, we do not really care about most of the platform information, but we do care about the data table. As you can see, this contains a lot of "Column" information and an "External-Data" entry. The external data gives a file reference that will not be immediately useful to us, since the path describes where the data is stored at the GEO web site. The actual file name (but not the directories) is the same as the name of the corresponding file that we extracted from the tarball.

- > plat1DT <- plat1["Data-Table"][[1]]</pre>
- > as.character(xmlSApply(plat1DT, xmlName))
- [1] "Column" "Column" "Column"
 [4] "Column" "Column" "Column"
 [7] "Column" "Column" "Column"
 [10] "Column" "Column" "External-Data"

Column Header Information is in the XML File

> plat1DT[[5]]

```
<Column position="5">
<Name>Operon_ID</Name>
<Description>Operon assigned Oligo ID</Description>
</Column>
```

> xmlValue(plat1DT["External-Data"][[1]])

[1] "/am/ftp-geo/DATA/MINiML/by_series/GSE1039/GPL976-tbl-1.t

A Sample Node

Samples have a similar structure:

> samp1 <- root[[8]]

[13] "Data-Table"

- > as.character(xmlSApply(samp1, xmlName))
- [1] "Status" "Title"
 [3] "Accession" "Type"
 [5] "Channel-Count" "Channel"
 [7] "Channel" "Description"
 [9] "Data-Processing" "Platform-Ref"
 [11] "Contact-Ref" "Supplementary-Data"

A Sample Node

> samp1["Accession"][[1]]

```
<Accession database="GEO">GSM16665</Accession>
```

- > samp1["Title"][[1]]
- <Title>Hs_004_187_2</Title>

Extracting Information from the Sample Nodes

Next, we create an object that identifies which of the child nodes of the root object represent samples. We can use this to immediately extract interesting sample information.

- > ArrayID <- sapply(idxSamp, function(x) {</pre>
- + xmlValue(root[[x]]["Title"][[1]])

- > GSMID <- sapply(idxSamp, function(x) {</pre>
- + xmlValue(root[[x]]["Accession"][[1]])

+ })

- > PlatformID <- sapply(idxSamp, function(x) {</pre>
- + xmlAttrs(root[[x]]["Platform-Ref"][[1]])

+ })

> data.frame(GSMID, ArrayID, PlatformID)[1:10, +]

	GSMID	ArrayID	PlatformID
1	GSM16665	Hs_004_187_2	GPL976
2	GSM16675	Hs_004_186_2	GPL976
3	GSM16679	Hs_004_235	GPL976
4	GSM16680	Hs_004_189_1	GPL976
5	GSM16681	Hs_004_188	GPL976
6	GSM16685	6Hs.094	GPL978
7	GSM16686	6Hs.195.1	GPL978
8	GSM16687	6Hs.168	GPL978
9	GSM16688	6Hs.169.1	GPL978
10	GSM16689	6Hs.166	GPL978

Sample Descriptions Contain Important Unstructured Data

Now we take a look at the "Description" field for one of the samples.

> xmlValue(samp1["Description"][[1]])

"Total RNA from beta7 cells isolated from human PBMC (CD4+ and CD45RA- population)\nPatient sex: female; Patient age: 30\nSubject ID# 001\n2 rounds amplification (Ambion's MessageAmp aRNA Kit)"

In this case, the contributors have structured the "Description" of each sample so that it contains potentially useful information such as the gender, age, and ID of each patient. The design of MINiML does not give a structured way to include patient covariates. Nevertheless, we can still extract the relevant information from the descriptions.

- > d <- sapply(idxSamp, function(x) {</pre>
- + xmlValue(root[[x]]["Description"][[1]])
 + })
- > click <- regexpr("sex: ", d)</pre>
- > clack <- regexpr("male; ", d)</pre>
- > Gender <- substring(d, click + 5, clack + 3)</pre>
- > click <- regexpr("Patient age: ", d)</pre>
- > Age <- as.numeric(substring(d, click + 13,</pre>
- + click + 15))
- > click <- regexpr("Subject ID# ", d)</pre>
- > Subject <- paste("S", substring(d, click +</pre>
- + 12, click + 14), sep = "")
- > rm(click, clack)

Reviewing the Patient Characteristics by Array

> data.frame(PlatformID, Subject, Age, Gender)

	PlatformID	Subject	Age	Gender
1	GPL976	S001	30	female
2	GPL976	S001	30	female
3	GPL976	S006	27	female
4	GPL976	S009	23	female
5	GPL976	S009	23	female
6	GPL978	S001	30	female
7	GPL978	S001	30	female
8	GPL978	S003	25	female
9	GPL978	S003	25	female
10	GPL978	S004	37	female
11	GPL978	S004	37	female

12	GPL978	S006	27	female
13	GPL978	S006	27	female
14	GPL978	S006	27	female
15	GPL978	S006	27	female
16	GPL978	S007	45	male
17	GPL978	S007	45	male
18	GPL978	S007	45	male
19	GPL978	S007	45	male
20	GPL978	S008	28	male
21	GPL978	S008	28	male
22	GPL978	S010	31	female
23	GPL978	S010	31	female
24	GPL978	S011	28	female
25	GPL978	S011	28	female
26	GPL978	S011	28	female
27	GPL978	S011	28	female

Why Do We Need Both Platforms?

We see that samples S001 and S006 were run on both platforms; sample S009 was only run on the older platform, and all the other samples were only run on the newer platform. Thus, we expect eventually to only use the data from the newer platform for our analysis.

Channel Information

We also know that these were two color experiments, and that the $\beta 7+$ and $\beta 7-$ cell populations from the same individual were used in the two channels of a single slide. So, we still need to extract this channel information. Looking to future applications, we have tried to write this code so it applies to different numbers of channels.

- > idxChan <- which(xmlSApply(samp1, xmlName) ==</pre>
- + "Channel")

- + assign(paste("Source", i, sep = ""), sapply(idxSamp, + function(x, i) {
- + xmlValue(root[[x]][[idxChan[i]]]["Source"][[1]
 + }, i))
 + }

> rm(i)

> data.frame(Subject, Source1, Source2)

Subject	Source1	Source2
---------	---------	---------

1	S001	beta7-	beta7+
2	S001	beta7+	beta7-
3	S006	beta7-	beta7+
4	S009	beta7-	beta7+
5	S009	beta7+	beta7-
6	S001	beta7-	beta7+
7	S001	beta7-	beta7+
8	S003	beta7+	beta7-
9	S003	beta7-	beta7+
10	S004	beta7+	beta7-

11 S004 beta7- beta7+

12 S006 beta7- beta7+

13	S006	beta7+	beta7-
14	S006	beta7+	beta7-
15	S006	beta7-	beta7+
16	S007	beta7-	beta7+
17	S007	beta7+	beta7-
18	S007	beta7+	beta7-
19	S007	beta7-	beta7+
20	S008	beta7+	beta7-
21	S008	beta7-	beta7+
22	S010	beta7+	beta7-
23	S010	beta7-	beta7+
24	S011	beta7+	beta7-
25	S011	beta7-	beta7+
26	S011	beta7+	beta7-
27	S011	beta7-	beta7+

Which Files Contain the Data?

The final information that we need for each sample is the name of the external file that contains the data. As mentioned above, this is the last component of the value of the "External-Data" entry in the "Data-Table". So, we can extract that piece with the following code.

The File Mapping is Straightforward

> data.frame(Subject, GSMID, File)[1:9,]

	Subject	GSMID	File
1	S001	GSM16665	GSM16665-tbl-1.txt
2	S001	GSM16675	GSM16675-tbl-1.txt
3	S006	GSM16679	GSM16679-tbl-1.txt
4	S009	GSM16680	GSM16680-tbl-1.txt
5	S009	GSM16681	GSM16681-tbl-1.txt
6	S001	GSM16685	GSM16685-tbl-1.txt
7	S001	GSM16686	GSM16686-tbl-1.txt
8	S003	GSM16687	GSM16687-tbl-1.txt
9	S003	GSM16688	GSM16688-tbl-1.txt

Putting the Sample Information Together

Next, we assemble all the information into a single data frame, and throw away the copies of the individual pieces that we no longer need.

> sampleInfo <- data.frame(File, ArrayID, PlatformID, + GSMID, Subject, Age, Gender, Source1, Source2) > rm(File, ArrayID, PlatformID, GSMID, Age, Gender, + Subject, Source1, Source2)

The Data Table

It is now time to look at the rest of the data table. As with the platform example above, the data table for each sample contains a bunch of column entries and one external data reference. Here is what a column entry looks like.

> dt[[1]][[1]]

```
<Column position="1">
```

<Name>ID_REF</Name>

<Description>the unique identifier of the feature derived fr
</Column>

Column Entries in the XML File

As you can see, the column entry contains an integer attribute that defines the position of the column, a "Name" that can be used as the column header, and an (optional) "Description" that allows us to interpret the column. The next block of code extracts the column names for each sample.

>	<pre>sampColNames <- sapply(dt, function(dt1) {</pre>
+	idxCol <- which(xmlSApply(dt1, xmlName) ==
+	"Column")
+	<pre>posn <- as.numeric(xmlSApply(dt1, xmlAttrs)[idxCol])</pre>
+	if (any(diff(posn) != 1))
+	<pre>stop("missing column names")</pre>
+	<pre>name <- as.character(xmlSApply(dt1, function(x) {</pre>
+	<pre>xmlValue(x[[1]])</pre>

+ })[idxCol])

- + if (any(is.na(name)))
- + stop("empty column name")

```
+ name
```

- + })
- > as.integer(sapply(sampColNames, length))

Notice that the tables have different numbers of columns, corresponding exactly to the two different platforms that were used for the experiments.

Reading the Actual Data

Now we can use the file names and column header information to read in the external data (i.e., the actual quantifications). This entire operation took about three minutes on my computer, which is several orders of magnitude faster than processing the SOFT files of the same data set with GEOquery.

31

>	home <- "GSE1039"
>	<pre>for (i in 1:nrow(sampleInfo)) {</pre>
+	<pre>fn <- file.path(home, as.character(sampleInfo[i,</pre>
+	"File"]))
+	vn <- as.character(sampleInfo[i, "GSMID"])
+	<pre>print(paste("Reading", vn, "from", fn))</pre>
+	<pre>temp <- read.table(fn, header = FALSE,</pre>
+	<pre>sep = "\t", quote = "", comment.char = "")</pre>
+	colnames(temp) <- sampColNames[[i]]
+	assign(vn, temp)
+	}
>	rm(i, vn, fn, temp)
>	<pre>rm(d, dt, idxSamp, idxChan, samp1, sampColNames,</pre>
+	plat1, plat1DT)

Parsing the Platform Information

The next block of code extracts the information describing the two platforms.

> idxPlat <- which(xmlSApply(root, xmlName) ==</pre>

```
+ "Platform")
```

- > Title <- sapply(idxPlat, function(x) {</pre>
- + xmlValue(root[[x]]["Title"][[1]])

```
+ })
```

- > GSMID <- sapply(idxPlat, function(x) {</pre>
- + xmlValue(root[[x]]["Accession"][[1]])

+ })

> dt <- sapply(idxPlat, function(x) {</pre>

+ })

- > File <- sapply(dt, function(x) {
 + y <- x["External-Data"][[1]]
 + z <- xmlValue(y)
 + w <- strsplit(z, "/")[[1]]
 + w[length(w)]
 + })
 > platformInfo <- data.frame(GSMID, Title, File)</pre>
- > rm(File, Title, GSMID)
- > platformInfo

GSMIDTitleFile1 GPL976 UCSF 4Hs Human v.2 Oligo Array GPL976-tbl-1.txt2 GPL978 UCSF 6Hs Human v.2 Oligo Array GPL978-tbl-1.txt

We now get the corresponding column names, and then read the external files containing the gene information for each platform.

>	pla	tColNames <- lapply(dt, function(dt1) {
+		idxCol <- which(xmlSApply(dt1, xmlName) ==
+		"Column")
+		<pre>posn <- as.numeric(xmlSApply(dt1, xmlAttrs)[idxCol])</pre>
+		if (any(diff(posn) != 1))
+		<pre>stop("missing column names")</pre>
+		<pre>name <- as.character(xmlSApply(dt1, function(x) {</pre>
+		<pre>xmlValue(x[[1]])</pre>
+		})[idxCol])
+		if (any(is.na(name)))
+		<pre>stop("empty column name")</pre>
+		name
+	})	
>	<pre>for (i in 1:nrow(platformInfo)) {</pre>	
---	--	
+	<pre>fn <- file.path(home, as.character(platformInfo[i,</pre>	
+	"File"]))	
+	vn <- as.character(platformInfo[i, "GSMID"])	
+	<pre>print(paste("Reading", vn, "from", fn))</pre>	
+	<pre>temp <- read.table(fn, header = FALSE,</pre>	
+	<pre>sep = "\t", quote = "", comment.char = "")</pre>	
+	colnames(temp) <- platColNames[[i]]	
+	assign(vn, temp)	
+	}	
>	rm(i, vn, fn, temp)	

> rm(dt, idxPlat, platColNames)

Converting to limma

We now have to convert the raw files (which have been loaded into R) into the RGList data structure needed by the limma package. We start by loading the package.

- > require(limma)
- [1] TRUE
- > library(marray)

CrossCut: A Utility Function

Because the data structures used by limma cut across the raw files produced by the quantifications, we are going to write a function that extracts them based on the column name.

>	<pre>crossCut <- function(sampleNames, columnName)</pre>	{							
+	<pre>temp <- lapply(sampleNames, function(x,</pre>								
+	cn) {								
+	data <- eval(as.name(x))								
+	data[, cn]								
+	<pre>}, columnName)</pre>								
+	temp <- as.matrix(as.data.frame(temp))								
+	colnames(temp) <- sampleNames								
+	temp								
+	}								

The Four Basic Limma Components

The GEO web page for this data set asserts (indirectly) that channel 1 = F635 = Cy5 = Red. You can also get this information from the descriptions of the columns in the sample data table entries. We need that information to make sure we later match "R" with "Source1".

- > isGPL978 <- sampleInfo[, "PlatformID"] == "GPL978"</pre>
- > si <- as.character(sampleInfo[isGPL978, "GSMID"])</pre>
- > R <- crossCut(si, "F635 Mean")</pre>
- > G <- crossCut(si, "F532 Mean")</pre>
- > Rb <- crossCut(si, "B635 Median")</pre>
- > Gb <- crossCut(si, "B635 Median")</pre>

39

Limma Lets Us Keep Other Components in a List

> other <- list(FPixels = crossCut(si, "F Pixels"), + BPixels = crossCut(si, "B Pixels"), Rsd = crossCut(si, + "F635 SD"), Gsd = crossCut(si, "F532 SD"), + Rbsd = crossCut(si, "B635 SD"), Ggsd = crossCut(si, + "B532 SD")) > myData <- new("RGList", list(R = R, G = G, + Rb = Rb, Gb = Gb, other = other, genes = GPL978, + printer = getLayout(GPL978)))

We like to clean up after ourselves:

> rm(R, Rb, G, Gb, other, si)

> rmlist <- c(as.character(sampleInfo[, "GSMID"]),</pre>

+ as.character(platformInfo[, "GSMID"]))

> rm(list = rmlist)

Normalizing in Limma

The default for nomralizing data in limma is to use print-tip loess normalization on each array separately. By default, this function also performs local background subtraction before normalizing.

> normData <- normalizeWithinArrays(myData)</pre>

Fitting Data with a Linear Model

- > b7 <- rep(1, sum(isGPL978))</pre>
- > b7[sampleInfo[isGPL978, "Source1"] == "beta7-"] <- -1</pre>
- > LMres <- lmFit(normData, design = b7)</pre>

Okay, what did we just do?

lmFit is the main workhorse function of the limma package, and it fits LInear Models to MicroArrays. But what is a linear model?

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \epsilon$$

Inside LMres

What numbers are being played with here?

> class(LMres)

[1] "MArrayLM"
attr(,"package")
[1] "limma"

> slotNames(LMres)

[1] ".Data"

Surprise! While this is an object of type "MArrayLM", its contents are contained in a simple data frame. So, what things do we have here?

Fitted Numbers

> length(LMres)

```
[1] 23184
```

> LMres[1,]

```
An object of class "MArrayLM"
$coefficients
[,1]
1 -0.02271092
```

```
$stdev.unscaled
    [,1]
1 0.2294157
```

\$sigma [1] 0.7898411

\$df.residual
[1] 18

\$cov.coefficients
 [,1]
[1,] 0.04545455

\$pivot [1] 1

\$method [1] "ls"

\$design [1] -1 -1 1 -1 1 17 more rows ...

\$genes

ID Block Column Row Operon_ID GB_ACC Unigene

1 1 1 1 H20000297 NM_002557 1154

Description

- 1 oviductal glycoprotein 1, 120kDa (mucin 9, oviductin)
 Symbol
- 1 OVGP1
- 1 AAAGGTGACTGTCCCCTCCAGAAACATATCAGTCACCCCTGAAGGGCAGACTATGCCTT SPOT_ID
- 1

\$Amean

1

5.869181

\$contrasts
 [,1]
[1,] 1

Behind the Curtain, 1

> normData\$M[1, 1:12]

	GSM16685	GSM16686	GSM16687	GSM16688
	NA	-0.18146738	0.12383032	0.07016037
	GSM16689	GSM16690	GSM16691	GSM16692
-0	.37034080	-0.04895584	0.56779109	0.89993210
	GSM16693	GSM16694	GSM16695	GSM16699
1	.10683670	-0.31239358	-0.20244255	-0.76691763

These are (some of) the log ratios that we have available for this gene.

> mean(normData\$M[1,], na.rm = TRUE)

[1] -0.02925766

> mean(normData\$M[1,] * LMres[1,]\$design, na.rm = TRUE)

[1] -0.02271092

This is the coeff value!

So, why are there NAs in the M field? Why do we need to multiply by the design vector? What do the 1's and -1's indicate?

Behind the Curtain, 2

This is "sigma":

> sqrt(var(normData\$M[1,] * LMres[1,]\$design, + na.rm = T))

[,1] [1,] 0.7898411

This is the number of valid reads:

> 1/LMres[1,]\$stdev.unscaled^2

[,1]

1 19

The lmFit call is summarizing the individual M values according in order to highlight a specified contrast. By changing the design matrix, different contrasts can be seen, and tested for.

52

Testing Significance

- > LMresEB <- eBayes(LMres)</pre>
- So, what do we get? (long list)
- > slotNames(LMresEB)
- [1] ".Data"
- > summary(LMresEB)

	Length	Class	Mode
coefficients	23184	-none-	numeric
stdev.unscaled	23184	-none-	numeric
sigma	23184	-none-	numeric

Introduction to Microarrays

df.residual	23184	-none-	numeric
cov.coefficients	1	-none-	numeric
pivot	1	-none-	numeric
method	1	-none-	character
design	22	-none-	numeric
genes	11	data.frame	list
Amean	23184	-none-	numeric
df.prior	1	-none-	numeric
s2.prior	1	-none-	numeric
var.prior	1	-none-	numeric
proportion	1	-none-	numeric
s2.post	23184	-none-	numeric
t	23184	-none-	numeric
p.value	23184	-none-	numeric
lods	23184	-none-	numeric
F	23184	-none-	numeric

F.p.value

23184 -none- numeric

Making Tables

At this point, we have some test statistic values and associated p-values. The test-stat values were computed by borrowing strength across the genes available on the array to get more stable estimates of "null variation", so we have "moderated" t-tests as opposed to the plain vanilla variety.

Still, given these, we would like to extract a small number of them and report them in a fairly illustrative fashion.

- > shortTable <- topTable(LMresEB, number = 10,</pre>
- + resort.by = "M")

What Do We Get?

> shortTable[9:10,]

	ID	Block	Column	Row	Operor	n_ID	GE	B_ACC	Unigene
10667	10667	23	20	2	H200002	2092	AK05	6276	12251
3152	3152	7	2	13	H200012	2024	Xe	8742	439320
					Desc	cript	tion	Sy	ymbol
10667	simila	ir to E	BcDNA:GH	I1141	15 gene	prod	luct	LOC15	51963
3152				int	tegrin,	alph	na 1]	TGA1

10667 GTTTTGGTGTGGACTCATGGCAAGCTGGTGTTTAAGAGGTCAGGAGGCCTGCTGA 3152 GAGCTTGCTATTCAAATATCCAAAGATGGGCTACCGGGCAGAGTGCCATTATGGG SPOT_ID M A t 10667 0.8438729 9.259563 9.099822

3152 -1.0599022 6.969965 -10.951647

P.Value adj.P.Val B 10667 2.482815e-09 5.756157e-06 11.12088 3152 1.033582e-10 4.064987e-07 13.78709

Hey, integrin made it to the list!

The Full Table...

🕲 Gene Lists - Mozilla Firefox												
Eile Edit View Go Bookmarks Tools Help												
	- 🛃 🌘	3 🏠 🗈	file:///m:/P	Private/ArrayCourse/Lecture	s06/Lectu	re19/GeneList.ht	ml	💌 📀 G				
🗋 Google 📄 Project Tracker 🔗 Entrez-PubMed 📄 MDACC Bioinfo 🗋 Microarray Core Faci 📄 Wiki: BiomarkerJour												
📄 R: Display	R: Display gene list as a HTML page Gene Lists											
	BioConductor Gene Listing											
ID	Block	Column	Row	Operon_ID	GB_	ACC	Unigene	Description	Symbol			
6647	14	11	18	H200017286	NM	016602	278446	G protein-coupled receptor 2	GPR2			
9314	20	11	7	H200006462	NM	005572	436441	lamin A/C	LMNA			
11717	25	20	6	H200006048	NM	002922	75256	regulator of G-protein signalling 1	RGS1			
18397	39	1	3	H200002118	NM	015271	435734	tripartite motif-containing 2	TRIM2			
<u>4910</u>	11	17	4	<u>H200003784</u>	NM	003966	27621	sema domain, seven thrombospondin repeats (type 1 and type 1-like), transmembrane domain (TM) and short cytoplasmic domain, (semaphorin) 5A	SEMA5A			
12122	26	5	3	H200001987	NM	018371	341073	chondroitin beta1,4 N-acetylgalactosaminyltransferase	ChGn			
3097	7	10	10	H200009382	AK0	26181	82101	pleckstrin homology-like domain, family A, member 1	PHLDA1			
<u>1755</u>	4	12	15	H200014446	NM	005767	123464	purinergic receptor P2Y, G-protein coupled, 5	P2RY5			
10667	23	20	2	H200002092	AK0	56276	12251	similar to BcDNA:GH11415 gene product	LOC151963			
3152	7	2	13	H200012024	X68′	742	439320	integrin, alpha 1	ITGA1			
<)					≥ [™]			
🔀 Find: pla	ot	💿 Fin	d Next 🙆) Find Previous 📰 Highligh	nt 🔲 Ma	atch case						
Done									.:			

> table2html(shortTable, disp = "file")

NULL

...Rest of The Full Table

😉 Gene Lists - Mozilla Firefox								×			
Eile Edit View Go Bookmarks Iools Help								0			
🔶 - 🤣 🛞 🏠 🗋 file:///m:/Private/ArrayCourse/Lectures06/Lecture19/GeneList.html 🔹 💽 Go 💽											
🗋 Google 🗋 Project Tracker 😒 Entrez-PubMed 🗋 MDACC Bioinfo 🗋 Microarray Core Faci 📄 Wiki: BiomarkerJour											
R: Display gene list as a HTML page								×			
	SPOT_ID	м	A	t	P.Value	adj.P.Val	В				
AAGGGACTACCTCTGTGCCTTGCCACATTAAATTG		2.45	7.84	19.26	0	0	23.69				
CCAGAATGGAGATGATCCCTTGCTGACTTACCGG		1.37	7.54	10.31	0	0	13.26				
GGCCAGGTAACTCTAGTTACACAGAAACTGGTAC		1.29	9.96	10.57	0	0	13.69				
GTTCGTAGCTACATACGTACCACAGTATTTTGGA		1.28	8.3	10.68	0	0	13.87				
GCCAGAGTTTTAGCCAAAGGTGTACTTACTTCCT		1.1	6.78	10.86	0	0	14.17				
ATTATTTTTTAAATTAAGCAGTTCTACTCGATCA		1.06	9.15	12.64	0	0	16.8				
TAAAAGGGTTTTCTTAGAAAGGGCAATATTGTCC		0.95	7.82	9.39	0	0	11.65				
GGGTAACAATGCCTCAGAAGCCTGCTTTGAAAA		0.89	11.98	13.28	0	0	17.66				
AGGTCAGGAGGCCTGCTGATCTTTCAAAGGACA		0.84	9.26	9.1	0	0	11.12				
GGGCAGAGTGCCATTATGGGTCATCCTGCTGAGT		-1.06	6.97	-10.95	0	0	13.79				
<u>s</u>							>				
🔀 Find: plot 💿 Find Next 🕥 Find Previous 📰 Highlight 🗌 Match case											
Done											

Why are there two forms of p-value? And what is B?

What is Going On?

They report both raw p-values and p-values that are adjusted for multiple testing (how?). The adjusted p-values can reach 1 when there are only a few samples.

The value B is the "log odds" that the gene is differentially expressed – if the value of B is 0.59, then the odds that the gene is differentially expressed are $\exp(0.59) = 1.803$ to 1, and the probability of differential expression is 1.803/(1.803 + 1) = 0.643. With log odds of 11, the probability is greater than 99.9%.

Is this the Right Contrast?

Not quite. Leading question – why were there at least two arrays run for each patient?

Dye Swaps.

There may be a dye effect present, and it may be possible to account for this. This requires adjusting the design matrix.

9

Accounting for Dye...

🕲 Gen	🕲 Gene Lists - Mozilla Firefox										
Eile Edit View Go Bookmarks Iools Help											
	🔶 - 🔁	7 区 🦿	1	file:///m:/Private/Arr	ayCourse/Lectures06	5/Lecture19/G	eneList2.html		💟 🙆 Go 💽		
📄 Goo	🗋 Google 🗋 Project Tracker 🗧 Entrez-PubMed 🗋 MDACC Bioinfo 📄 Microarray Core Faci 📄 Wiki: BiomarkerJour										
📄 R: D	splay gene lis	t as a HTML pa	age	Gene Lists	5		📄 Gene Lists		×		
	BioConductor Gene Listing										
\mathbf{D}	Block	Column	Row	Operon_ID	GB_ACC	Unigene	Description	Symbol	Sequence		
<u>664</u>	14	11	18	H200017286	NM 016602	278446	G protein-coupled receptor 2	GPR2	GGTGGGGGAACACTGAGAAAGAGC		
<u>117</u>	<u>07</u> 25	10	6	<u>H200005644</u>	<u>AK056032</u>	31818	Homo sapiens cDNA FLJ46153 fis, clone TESTI4001037		GTGAGCACGAGATGATTCCAGAAC.		
990'	21	16	12	<u>H200011676</u>	<u>NM 005142</u>	110014	gastric intrinsic factor (vitamin B synthesis)	GIF	GCTTTGCCAAGACCCTGCTGGCCA		
114	<u>81</u> 24	7	16	<u>H200015303</u>	NM 031200	225946	chemokine (C-C motif) receptor 9	CCR9	TCCCTAGAAAATGGGCTGGTTCTT		
101	<mark>33</mark> 22	19	2	<u>H200001707</u>	<u>NM 017748</u>	406223	hypothetical protein FLJ20291	FLJ20291	GCTTGTGCCACTCTGGAAGGCTGT		
<u>881</u> ′	19	18	6	H200006011	<u>BC017503</u>	112906	cerebellar degeneration-related protein 2, 62kDa	CDR2	GTTAGCATATGCCCTAGAGGGCCT		
1422	<u>.9</u> 30	12	11	H200010424	NM 003085	90297	synuclein, beta	SNCB	CCAGGGCTGTCCTTAGACTCCTTC		
<u>107</u> -	17 23	16	б	H200005892	NM 002123	409934	major histocompatibility complex, class II, DQ beta 1	HLA-DQB1	GACTCCTGAGACTATTTTAACTGGC		
185	<u>9</u> 39	18	8	H200007842	<u>AK001399</u>	169611	diablo homolog (Drosophila)	DIABLO	TTTACGTCGTCAAAAATGATTTAGI		
103	10306 22 16 8 H200007733 NM 003152 437058 signal transducer and activator of transcription 5A STAT5A ATATATTCTCTCCCCCTCCGTTGGGGC										
<				Ш]					
🔝 Fin	d: plot		💿 Fin	d Next 🙆 Find Prev	vious 📃 Highlight	Match cas	se				
Done	Done										

> table2html(shortTable2, disp = "file");

The table changes a lot...

Is it what they used in the paper?

Not quite. There, they also decided to not subtract background, with the result that they did not have to deal with those pesky NA values.

They also dealt with several replicates per person. This can be accomodated in ImFit by defining a more extensive model matrix.

The general lesson here is that the answers that we get change rather drastically as we change the nature of the question being asked.

This is addressed in considerable detail in Chapter 23 of Gentleman et al on limma by Gordon Smyth. We will revisit this in later lectures.

Comments on Replication

Why do we need to treat replicates differently than other samples?

They're not measuring "independent" quantities. If we measure 10 replicates from a sick person and 10 replicates from a healthy person, then contrasting these 20 arrays, we're still contrasting just one person with another. Replications in the form of dye-swaps, however, is still useful in that it allows us to preclude certain biases from affecting our results.

```
(adapted from Smyth's chapter)
```

Let's say that we have two patients that we want to compare with two controls. How many possible pairwise combinations are there?

Here, there are 8: 2 controls * 2 patients * 2 dye orderings.

Now, what we really want to say something about is the difference between disease states: avg disease - avg control.

This in turn is given by

$$(D1 + D2)/2 - (C1 + C2)/2$$

But how do we get these?

Levels of Contrasts

These are average levels for each individual, so that the results for one individual do not dominate the results by simply being present in more of the samples.

These average levels can be estimated, using an appropriately defined design matrix.

We can lay things out more precisely.

What Goes Where

- > fakeSamples <- read.table("fakeSamples.txt",header=T)</pre>
- > fakeSamples
 - FileName Cy3 Cy5
- 1 F1.gpr D1 C1
- 2 F2.gpr D1 C2
- 3 F3.gpr D2 C1
- 4 F4.gpr D2 C2
- 5 F5.gpr C1 D1
- 6 F6.gpr C2 D1
- 7 F7.gpr C1 D2
- 8 F8.gpr C2 D2

Coming up with the design is fairly easy, for one relative to all of the others

The Model Matrix

- > design <- modelMatrix(fakeSamples, ref="D1")</pre>
- > design
 - C1 C2 D2
- 1 1 0 0
- 2 0 1 0
- 3 1 0 -1
- 4 0 1 -1
- 5 -1 0 0
- 6 0 -1 0
- 7 -1 0 1
- 8 0 -1 1

+1 if the sample is in Cy5, -1 if it is in Cy3.

Fit the Model and Contrast

- > design <- cbind(Dye = 1, design);</pre>
- > fakeFit <- lmFit(fakeMA, design);</pre>

Given things that are directly estimable, define the contrast of interest in terms of the values found, and fit the contrast.

> contrast.matrix <- makeContrasts(</pre>

DvsC = (D2/2) - ((C1+C2)/2),

levels = design)

- > fakeFitContEB <- eBayes(fakeFitCont)</pre>
Things We Glossed Over, 1

How did we normalize the data?

We made a call to normalizeWithinArrays, but what does that do?

By default, this deals with print-tip loess, but there are two things to consider here. First, print-tip loess makes stronger assumptions that loess. Ratios from each print tip are assumed to have the same distributions, and this is a dangerous assumption if the allocation of clones to plates is nonrandom. Spots grouped by function may be brighter.

Things We Glossed Over, 2

The second aspect of normalization that's a bit more difficult in the initial analysis is the question of how to deal with multiple array layouts.

I would tend to use some type of print-tip or spatial loess within each array to correct for overall trends, and then use quantile normalization to line up the ratios for genes spotted on both platforms.