
GS01 0163
Analysis of Microarray Data

Keith Baggerly and Kevin Coombes
Department of Bioinformatics and Computational Biology

UT M. D. Anderson Cancer Center
kabagg@mdanderson.org

kcoombes@mdanderson.org

14 November 2006

INTRODUCTION TO MICROARRAYS 1

Lecture 22: Classification with Microarrays I

• Clustering and Classification

• Classification Methods

• LDA, DLDA, QDA

• K Nearest Neighbors

• Validation

• Classification and Regression Trees

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 2

Discovery and Prediction

Class Discovery is most closely associated with clustering; we
are using structure inherent in the data to suggest groupings of
interest.

Class Prediction, by contrast, is most closely associated with
classification. Here, we start with a few samples from each of a
few classes known to be of interest a priori, and try to allocate
new observations to these classes.

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 3

How Classification Works

In general, the first step in classification with microarrays is to
select a subset of genes to work with, since the entire set can be
problematic.

Given a set of features, various methods are then used to divide
up the space of possible values into regions that are “class 1”,
“class 2” and so on. Typically, these regions will be divided by
smooth curves defining a “decision boundary”.

Smooth boundaries have the advantage that they can suggest
some biology.

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 4

Some Classification Methods

Linear Discriminant Analysis (LDA, aka Fisher’s LDA)

Quadratic Discriminant Analysis (QDA)

Diagonal Linear Discriminant Analysis (DLDA)

Classification and Regression Trees (CART)

k Nearest Neighbors (KNN)

Support Vector Machines (SVM)

Classification and Regression Trees (CART)

Genetic Algorithms

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 5

A Data Set

Assessing the importance of BRCA1 and BRCA2 mutations in
breast cancer. Initially introduced in Hedenfalk et al (2001), and
filtered a bit in Simon et al (2003):

http://linus.nci.nih.gov/BRB-ArrayTools.html

under “Book” and “BRCA”.

Log ratio measurements on 3226 genes for 22 breast tumors, 7
with BRCA mutations and 8 with BRCA2 mutations.

Focus on dividing BRCA2 status groups.

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

http://linus.nci.nih.gov/BRB-ArrayTools.html

INTRODUCTION TO MICROARRAYS 6

Choosing a Subset of Genes

Most commonly, we pick those that show good univariate
performance at separating the groups of interest, either by t-tests
or Wilcoxon tests (2 groups) or ANOVA or Kruskal-Wallis tests (3
or more groups).

This makes a pretty strong assumption that there will not be any
really useful interaction effects in the absence of important
information from the individual components.

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 7

What we got Here

Here, we used pooled two-sample t-tests to contrast the 8
BRCA2 samples with the 14 others, and chose to focus on just
the ones that had a p-value < 0.001 (there are 49 of these).

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 8

Telling Groups Apart

In telling two groups apart, a natural starting point is to use as
simple a rule as possible – drawing a straight line, mapping every
observation down onto that line, and cutting the line at some
central point.

Conversely, we can think of this as taking the space and using a
sheet to cut it in half – everything on the left side of the sheet will
be classed in group 1, and everything on the right will be classed
in group 2. This is a simple decision boundary.

So, how do we choose the best line to use?

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 9

Fisher’s Linear Discriminant Analysis

In 1d, the problem is pretty straightforward – we find the two
group means and place our cut precisely at the midpoint.

In 2d, this is still partially true – the optimal line to use is the one
that connects the two group means, and the cut point is still at the
middle. The question is one of how to map points in the plane
down onto this line.

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 10

A Simple Example

Say that the two groups have centers at (1,1) and (2,2), and that
the variances are the same on the two axes. Then

• the line joining the two is y = x,

• the center point is (1.5,1.5),

• and the best separating plane is orthogonal to the connecting
line and passes through the center – y = 3− x.

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 11

Simple Classification 1

Looks pretty easy...

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 12

Fisher’s Linear Discriminant Analysis

Now say that something got screwed up, and the measurements
on the x axis were sent in mm as opposed to m.

The centers are now (1000,1) and (2000,2), the central cut point
is now (1500,1.5), and the connecting line is y = x/1000.

The optimal separating plane, however, is not orthogonal to this
line.

If it were, the line would be y = 1500001.5− 1000x.

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 13

Fisher’s Linear Discriminant Analysis

But all I did was stretch the x-axis from what it was before; the
optimal separator should also stretch.

Since this separator hit the y axis at 3 before the stretch, it should
still do so after. Thus, the new “best line” is y = 3− x/1000.

The optimal separating line should not change if we simply
change our measuring units, so we need a method that is
scale-invariant.

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 14

Simple Classification 2

Hmm.

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 15

Extending the t test

The t test is scale-invariant:

x̄1 − x̄2

sp

√
1
n1

+ 1
n2

as is its square

(x̄1 − x̄2)
{

s2
p(

1
n1

+
1
n2

)
}−1

(x̄1 − x̄2).

So we need to extend this by standardizing the data in general.

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 16

The Extension

Let

W = (x̄1 − x̄2)S−1

{
x− 1

2
(x̄1 + x̄2)

}
.

Here S is the covariance matrix.

If W > 0, then x belongs to group 1, else it belongs to group 2.

We have the dividing line, a squashing of the space to
standardize things, and a measurement along this line.

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 17

Some R Code

> library(’MASS’);
> ds1 <- matrix(rnorm(40), 2, 20) + 1;
> ds2 <- matrix(rnorm(40), 2, 20) + 2;
> data.set <- cbind(ds1, ds2)
> classes <- factor(c(rep(’I’, 20), rep(’II’, 20)))
>
> my.lda <- lda(t(data.set),grouping=classes)
> my.predictions <- predict(my.lda, t(data.set))
>
> table(my.predictions$class, classes)

classes
I II

I 14 5
II 6 15

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 18

Does this Work?

Well, it certainly did for the problems Fisher used it for back in
1936. For microarray data, however, there can be some
problems.

Specifically, in order to use linear discriminant analysis, we need
to compute the inverse of the sample covariance matrix, and if
we have k variables that means that we are estimating k(k + 1)/2
different variances, in addition to k means. That’s a lot, and can
get unstable if k2 is an appreciable fraction of the total number of
samples.

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 19

Does it Work Here?

Here, when we began, n = 22 and k = 49. Whoops. Inverting the
matrix will not work at all; we have to restrict our attention to a
smaller number of features (say 5).

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 20

Fixum Addum Hoccum

What if we don’t use the entire covariance matrix, but rather just
the main diagonal?

This is much better behaved for microarray data.

This approach is known as Diagonal Linear Discriminant Analysis
(DLDA).

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 21

More R Code

> d1bar <- apply(ds1, 1, mean);
> d2bar <- apply(ds2, 1, mean);
> d1var <- apply(ds1, 1, var);
> d2var <- apply(ds2, 1, var);
> n1 <- ncol(ds1)
> n2 <- ncol(ds2)
> dvar <- ((n1-1) * d1var + (n2-1) * d2var)/(n1+n2-2);
> W <- (d1bar - d2bar) % * % diag(dvar) % * %
+ t(t(data.set) - (d1bar + d2bar)/2);
> table(classes, W>0)

classes FALSE TRUE
I 7 13
II 15 5

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 22

Further Extensions

So far, we’ve used means and covariance matrices, but we’ve
assumed that the covariances are the same for the two groups.

If we assume that the two groups are both normally distributed,
but that the two covariance matrices can be different, then the
contours that get drawn result from drawing concentric ellipsoids
about the two group centers, and the decision boundary can be
curved. This is known as Quadratic Discriminant Analysis (QDA).

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 23

And More R Code

> library(’MASS’)
> my.qda <- qda(t(data.set),grouping=classes)
>
> qda.predictions <- predict(my.qda, t(data.set))
> table(qda.predictions$class, classes)

classes
I II

I 15 6
II 5 14

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 24

Back away from the Covariance Matrix

and nobody will get hurt. Easy now...

The discriminant methods that we have described so far are
focused on mean or central behavior.

We can also carry over some ideas from the clustering/linkage
realm, and decide to classify a new sample on the basis of the
classification that holds for the known samples closest to it. If we
look at the k nearest neighbors (KNN), then the sample is
classified according to majority vote among the k.

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 25

Something Odd about the Neighbors..

KNN is most explicitly defined in terms of both training and test
sets. It is very rarely discussed solely in terms of the training sets
which allow us to partition the space into “group 1 regions” and
“group 2 regions”.

This can be more flexible, and can produce some odd decision
boundaries (a mixed blessing).

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 26

Even More R Code

library(’class’);

> my.knn <- knn(
+ train = t(data.set[,c(1:10, 21:30)]),
+ test = t(data.set[,c(11:20, 31:40)]),
+ k = 1,
+ cl = classes[c(1:10, 21:30)])
> table(my.knn, classes[c(11:20, 31:40)])

my.knn I II
I 4 8
II 6 2

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 27

Relying on more neighbors

> my.knn <- knn(
+ train = t(data.set[,c(1:10, 21:30)]),
+ test = t(data.set[,c(11:20, 31:40)]),
+ k = 3,
+ cl = classes[c(1:10, 21:30)])
> table(my.knn, classes[c(11:20, 31:40)])

my.knn I II
I 5 10
II 5 0

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 28

How Good is the Rule?

How well does it classify the data?

Is this a valid test of the classifier?

Probably not. If the data to be predicted is used to train the
classifier in the first place, then our results will look better than
they should. This is the problem of “overfitting” the data.

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 29

Our Task

We need to think of a way to assess the prediction accuracy of
the rule using samples that the rule hasn’t seen.

So, where will these samples come from?

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 30

Cross-Validation

We can make use of the samples we have by using only some of
them to fit the model, and then predicting the status of the one(s)
we haven’t seen.

We’re going to do this in stages, working first in a context where
there should be nothing going on to try to highlight the important
issues a bit more clearly.

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 31

Working with Noise

start with the null matrix
nothing.here <- matrix(rnorm(20000),

1000,20);

Pick the best 5 t-test "genes"
ds1 <- nothing.here[,1:10];
ds2 <- nothing.here[,11:20];
mu1 <- apply(ds1,1,mean);
mu2 <- apply(ds2,1,mean);
var1 <- apply(ds1,1,var);
var2 <- apply(ds2,1,var);
varpool <- ((10-1) * var1+(10-1) * var2)/18;

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 32

Fitting the Best

nothing.t <- (mu1 - mu2) /
sqrt(varpool * (1/10 + 1/10));

nothing.ranks <- rank(abs(nothing.t));
nothing.best5 <-

nothing.here[nothing.ranks > 995,];

Use LDA to separate the data and to
predict the status of the 20 samples.
nothing.lda1 <- lda(t(nothing.best5),

grouping=as.factor(
c(rep(1,10),rep(2,10))));

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 33

Counting Successes

nothing.predictions1 <- predict(
nothing.lda1,t(nothing.best5));

nothing.right1 <- sum(
nothing.predictions1$class[1:10] == 1) +

sum(
nothing.predictions1$class[11:20] == 2);

Here, we got 20 right. That looks a bit too good. How are we
overfitting?

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 34

Leaving one Out

Next, use cross-validation with the 5
genes chosen above to fit the divider
on 19, and to predict the status of
the last one.

groupvec <- as.factor(c(rep(1,10),
rep(2,10)));

predvec <- rep(0,20);
for(i1 in 1:20){

nothing.lda2 <- lda(
t(nothing.best5[,-i1]),
grouping=groupvec[-i1]);

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 35

Making the Predictions

nothing.predictions2 <- predict(
nothing.lda2,t(nothing.best5[,i1]));
predvec[i1] <-

nothing.predictions2$class;
}
nothing.right2 <-

sum(predvec[1:10] == 1) +
sum(predvec[11:20] == 2);

Doing this, we get 17 right. Still a bit high. How are we overfitting?

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 36

Refitting Everything I

Next, use cross-validation by using
19 samples, defining the 5 best on
the basis of those 19, and then
predicting the status of the last case.

predvec3 <- rep(0,20);
for(i1 in 1:10){

mu1 <- apply(ds1[,-i1],1,mean);
mu2 <- apply(ds2,1,mean);

Refit the selection of the 5 genes to be used!

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 37

Refitting Everything II

var1 <- apply(ds1[,-i1],1,var);
var2 <- apply(ds2,1,var);
varpool <- ((9-1) * var1 + (10-1) * var2)/17;

nothing.t <- (mu1 - mu2) /
sqrt(varpool * (1/9 + 1/10));

nothing.ranks <- rank(abs(nothing.t));
nothing.best5 <- nothing.here[

nothing.ranks > 995,];

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 38

Refitting Everything III

nothing.lda3 <- lda(
t(nothing.best5[,-i1]),
grouping=groupvec[-i1]);

nothing.predictions3 <- predict(
nothing.lda3,t(nothing.best5[,i1]));

predvec3[i1] <-
nothing.predictions3$class;

}

Here, we get 6 right.

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 39

Is This Consistent?

nothing.right1: 20,20,20,etc

nothing.right2: 17,18,20,etc

nothing.right3: 6,12,8,etc

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 40

Classification and Regression Trees (CART)

How does CART work?

CART assumes that the axes (genes) have inherent meaning,
and tries to work with them directly as opposed to forming linear
combinations.

This has some potential advantages in terms of interpretation,
and in terms of specifying a rule.

CART splits the data using a series of binary decisions.

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 41

CART Questions

How should a split be chosen?

When should we stop splitting?

When we reach a terminal node (a leaf), what class should we
say we’ve found?

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 42

Choosing a Split

Before we’ve done any splitting of the data, we have a mixture of
cases and controls. We can view this as the root node, and
initially we would say that this node has a certain amount of
“impurity” – a node is said to be pure if all of the samples at that
node are of the same class.

We want to

define a measure of impurity

find splits that reduce this measure

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 43

Defining Impurity

There are a few different mathematical ways of defining the
impurity of a node; the two most common are

The entropy or information impurity:

−
∑

classes

P (class) ∗ log2(P (class))

The Gini index impurity:

1−
∑

classes

P (class)2

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 44

Properties of Impurity

Both of these are peaked in the center – nodes that are split half
and half are highly impure.

Similarly, both of these are 0 at the ends – nodes that are all of
one class have no impurity.

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 45

Working with Gini

In the BRCA example, we compute the overall impurity by
computing the impurity of the root node and multiplying it by the
number of samples at that node. Here, this becomes

22 ∗

{
1−

(
8
22

)2

−
(

14
22

)2
}

= 10.18182.

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 46

Working with Gini

Now let’s say that we can split this node according to the values
of variable x1. There are 13 samples with x1 < 0, and all 13 of
these have no BRCA2 mutations. There are 9 samples with
x1 >= 0, and 8 of these have BRCA2 mutations.

What is the impurity after this split?

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 47

Working with Gini Nodes

Here, we have to compute the values at the two nodes and
combine them:

13 ∗

{
1−

(
13
13

)2

−
(

0
13

)2
}

+

9 ∗

{
1−

(
8
9

)2

−
(

1
9

)2
}

= 1.77778.

The reduction in impurity that we get by making this split is
10.18182− 1.77778 = 8.40404.

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 48

Observations about Splitting

In general, we choose the split giving the biggest overall
reduction in impurity.

It’s easier to split large nodes, as even small reductions in
impurity are magnified by the number of samples involved.

At some point, however, it’s not worth it anymore.

If we keep splitting the data until every node is completely pure,
then in general we will have overfit the data. We want our splits to
correspond to things we think are most likely to persist.

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 49

Ways to Stop Splitting

We can choose to stop if

The best reduction in impurity that we can get is below a certain
threshold value.

The number of samples at a node gets below a specified
threshold value.

Specifying these thresholds is something of a black art.

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 50

Some R Code

CART can also be viewed as recursive partitioning, and R uses
the function rpart .

brcaSampleInfo$BRCA2
> brcaSampleInfo$BRCA2

[1] - - - - - - + + + + -
[12] - - - - - - - + + + +
Levels: + -
brcaNumbersShort <- brcaNumbers[

pvalsBRCA2 < 0.001,];

library(’rpart’);

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 51

Output I

treefit1 <- rpart(brcaSampleInfo$BRCA2 ˜ .,$
data.frame(t(brcaNumbersShort)))

> treefit1
n= 22
node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 22 8 - (0.3636364 0.6363636)
2) X914< -0.2607988 9 1 +

(0.8888889 0.1111111) *
3) X914>=-0.2607988 13 0 -

(0.0000000 1.0000000) *

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 52

Output II

> summary(treefit1)
n= 22

CP nsplit rel error xerror xstd
1 0.875 0 1.000 1.00 0.2820380
2 0.010 1 0.125 1.25 0.2919371

Node number 1: 22 observations, complexity param=0.875
predicted class=- expected loss=0.3636364

class counts: 8 14
probabilities: 0.364 0.636

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 53

Output III (Split Not Unique?)

left son=2 (9 obs) right son=3 (13 obs)
Primary splits:

X914 < -0.2607988 to the left,
improve=8.404040, (0 missing)

X2456 < 0.1496223 to the right,
improve=8.404040, (0 missing)

X2804 < 0.02940068 to the left,
improve=8.404040, (0 missing)

X35 < 0.5606404 to the right,
improve=8.315152, (0 missing)

X501 < 1.533854 to the right,
improve=8.315152, (0 missing)

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 54

Output IV

Surrogate splits:
X2977 < 0.1242674 to the left,

agree=0.955, adj=0.889, (0 split)
X35 < 0.5606404 to the right,

agree=0.909, adj=0.778, (0 split)
X501 < 1.533854 to the right,

agree=0.909, adj=0.778, (0 split)
X952 < -0.2179817 to the left,

agree=0.909, adj=0.778, (0 split)
X1656 < 1.052772 to the left,

agree=0.909, adj=0.778, (0 split)

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 55

Output V

Node number 2: 9 observations
predicted class=+ expected loss=0.1111111

class counts: 8 1
probabilities: 0.889 0.111

Node number 3: 13 observations
predicted class=- expected loss=0

class counts: 0 13
probabilities: 0.000 1.000

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 56

So, does CART work?

Unfortunately, it doesn’t work all that well for most microarray
data experiments.

The problem is simply that by focusing so intently on a small
number of variables (dealing with ties?) that CART can get
misled by random chance splits. This is less of a problem if the
number of arrays in the experiment is large (50 or more) such
that we are unlikely to see very large reductions in impurity even
when we start with 1000s of genes.

Cross-validation shows problems.

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

INTRODUCTION TO MICROARRAYS 57

Can we fix CART?

By averaging the predictions from several models, we may come
up with more robust algorithms. The problem is that by
averaging, we are combining the results from many different
genes, and the simplicity of interpretation is somewhat lost.

Useful if we start with a small number of variables.

c© Copyright 2004–2006, Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA

