GS01 0163
Analysis of Microarray Data

Keith Baggerly and Kevin Coombes
Section of Bioinformatics
Department of Biostatistics and Applied Mathematics
UT M. D. Anderson Cancer Center
kabagg@mdanderson.org
kcoombes@mdanderson.org

27 September 2007
Lecture 9: Normalization, Affy, R, and Glass

• Revisiting Normalization in BioConductor

• R manipulations of AffyBatch

• Normalizing Project Normal
A Bioconductor Adventure...

Our goal – to reproduce the study of Bolstad et al. (2003) using the data supplied with BioConductor.

First, pull in the Affy functions and get the data

```r
> library(affy);
> library(affydata);
> data(Dilution);
> data(affybatch.example);
```
What steps are we trying to follow?

Starting with an AffyBatch object, presumably assembled straight from CEL files, we want to test the effects of different normalization methods on the stability of probeset measurements of the same stuff.

The steps:

Background correction
Normalization
PM correction
Summary Quantification

Monitor as we go!
Which data do we work with?

Eventually, we want to work with Dilution, as that’s what they used, but there is a key argument for working with affybatch.example to begin with: the file is smaller. How much smaller?

> Dilution
AffyBatch object
size of arrays=640x640 features (27210 kb)
cdf=HG_U95Av2 (12625 affyids)
number of samples=4
number of genes=12625
annotation=hgu95av2
notes=
Which data do we work with? (2)

> affybatch.example
AffyBatch object
size of arrays=100x100 features (7 kb)
cdf=cdfenv.example (150 affyids)
number of samples=3
number of genes=150
annotation=
notes=

We’ll work with both from time to time.
Does this data need normalizing? (View 1)

boxplot(Dilution); # shows log intensities!
dev.copy(png, file="boxplot1.png", col=2:5); dev.off();
What about the densities? (View 2)

```r
hist(Dilution, lty=1, col=2:5, lwd=3);
dev.copy(png, file="hist1.png");
dev.off();
```
and the MA plots?

par(mfrow=c(2,2));
MAplot(Dilution);
par(mfrow=c(1,1));
Look at all pairs?

```r
mva.pairs(Dilution);
```

Error in log(x, base) : Non-numeric argument to mathematical function

>` help(mva.pairs)`

want to feed this function a matrix, with columns corresponding to arrays. Where are these numbers?
I can never remember...

Objects have slots!

> slotNames(Dilution)
[1] "cdfName" "nrow" "ncol"
[4] "assayData" "phenoData" "featureData"
[7] "experimentData" "annotation" ".__classVersion__"

We can extract the numbers we want with `exprs`.

> length(exprs(Dilution))
[1] 1638400
> dim(exprs(Dilution))
[1] 409600 4
What’s in the Slots?

Dilution@cdfName
[1] "HG_U95Av2"

> Dilution@nrow
[1] 640

> Dilution@ncol
[1] 640

> Dilution@phenoData
 sampleNames: 20A, 20B, 10A, 10B
 varLabels and varMetadata:
 liver: amount of liver RNA hybridized to array
 sn19: amount of central nervous system RNA hybridized to array
 scanner: ID number of scanner used

> Dilution@experimentData
Experiment data
Experimenter name: Gene Logic
Laboratory: Gene Logic
Contact information: 708 Quince Orchard Road
Gaithersburg, MD 20878
Telephone: 1.301.987.1700
Toll Free: 1.800.GENELOGIC (US and Canada)
Facsimile: 1.301.987.1701

Title: Small part of dilution study
URL: http://qolotus02.genelogic.com/datasets.nsf/
PMIDs:

Abstract: A 68 word abstract is available. Use 'abstract' method.
Other:
> Dilution@annotation
[1] "hgu95av2"

> Dilution@.__classVersion__

 R Biobase eSet AffyBatch
 "2.5.0" "1.13.22" "1.1.0" "1.2.0"

Still haven’t touched assayData or featureData...
What’s in the Slots? (pt.2)

> Dilution@featureData
 featureNames: 1, 2, ..., 409600 (409600 total)
 varLabels and varMetadata: none
> class(Dilution@featureData)
 [1] "AnnotatedDataFrame"
attr(, "package")
 [1] "Biobase"
> slotNames(Dilution@featureData)
 [1] "varMetadata" "data" "dimLabels" "__classVersion__"
> dim(Dilution@featureData@data)
 [1] 409600 0
> rownames(Dilution@featureData@data)[10]
 [1] "10"
What’s in the Slots? (pt.3)

> Dilution@assayData
$exprs

 20A 20B 10A 10B
1 149.0 112.0 129.0 60.0
...
24999 417.8 305.8 358.0 212.5

[reached getOption("max.print") -- omitted 384601 rows]

> class(Dilution@assayData)
[1] "list"

> length(Dilution@assayData)
[1] 1

> names(Dilution@assayData)
[1] "exprs"

> class(Dilution@assayData[[1]])
[1] "matrix"

> dim(Dilution@assayData[[1]])
[1] 409600 4
Back to M vs A

mva.pairs(exprs(Dilution));
Spatial Plots?

```r
image(affybatch.example[,1], transfo=log2);
```
Ratios of Spatial Plots?

```r
image(matrix(exprs(affybatch.example[,1]),
    nrow=nrow(affybatch.example),
    ncol=ncol(affybatch.example)),
    transfo=log2);
```

parameter “transfo” can’t be set in high-level plot() function.

```r
image(log2(matrix(
    exprs(affybatch.example[,1]),...```

```
image(log2(matrix(exprs(affybatch.example[,1]),..)),
 main=sampleNames(affybatch.example[,1]));
Ratio Plot 1 (problem: fake geometry)

```r
image(log2(matrix(exprs(affybatch.example[,1])/exprs(affybatch.example[,2]),...),
main=paste(sampleNames(affybatch.example[,1]),...));
```

© Copyright 2004-2007 Kevin R. Coombes and Keith A. Baggerly
Ok, start processing. BG first

\texttt{Dilution.bg <- bg.correct.rma(Dilution);}

Did this change things?

\texttt{hist(Dilution.bg, lty=1, col=2:5, lwd=3)}

Let's also try it a different way to make sure...

\texttt{plotDensity(log2(exprs(Dilution.bg)), lty=1, col=2:5, lwd=3)}
Picture 1 After BG

hist(Dilution.bg, lty=1, col=2:5, lwd=3)
Picture 2 After BG

plotDensity(log2(exprs(Dilution.bg)), lty=1, col=2:5, lwd=3)
plotDensity(log2(pm(Dilution.bg)),
 lty=1, col=2:5, lwd=3)
Is Background a Big Deal?

```
Dilution.bg <- bg.correct.mas(Dilution);
hist(Dilution.bg, lty=1, col=2:5, lwd=3);
title(main="Dilution data, MAS background");
```
and now we normalize!

This is where the differences come in. We can invoke

normalize.AffyBatch.constant
normalize.AffyBatch.contrasts
normalize.AffyBatch.invariantset
normalize.AffyBatch.quantiles

or, of course, we can have expresso
Expresso, no normalization

eset0 <- expresso(Dilution,
bgcorrect.method="rma",
normalize=FALSE,
pmcorrect.method="pmonly",
summary.method="medianpolish");

Now at this point, eset0 is an ExpressionSet object; the dimensions of the matrix extracted by exprs have changed as we have shifted from features (probes) to probesets.
What Does an ExpressionSet Have?

> slotNames(eset0)
[1] "assayData" "phenoData" "featureData"
[4] "experimentData" "annotation"
[6] ".__classVersion__"
> rownames(eset0@featureData@data)[10]
[1] "1009_at"
> eset0@assayData
<environment: 0x1cb8f904>
> ls(eset0@assayData)
[1] "exprs" "se.exprs"
> dim(get("exprs",eset0@assayData))
[1] 12625 4
Checking the Environment

> myEnv <- new("environment")
> frogs <- rnorm(5)
> assign("frogs", frogs, envir=myEnv)
> ls(myEnv)
[1] "frogs"

Environments are useful things. Basically, they’re R’s answer to “pass by reference” instead of “pass by value”.
What do we want?

The mean and variance of the probeset measurements gene by gene, to describe the behavior of this normalization method.

> dim(exprs(eset0))
[1] 12625 4
> eset0.mu <- apply(exprs(eset0),1,"mean");
> eset0.var <- apply(exprs(eset0),1,"var");

Now we want another method to compare to.

Actually, in order to explore things, I found it useful to work with a smaller sample first. So, redo the above processing using affybatch.example instead of Dilution.
Constant normalization: choosing baseline

find the “middle behavior” chip

```r
> apply(exprs(affybatch.example),2,"median");
  20A   20B   10A
147.3 118.0 125.0
```

```r
eset1 <- expresso(affybatch.example,
   bgcorrect.method = "rma",
   normalize.method = "constant",
   normalize.param = list(refindex=3),
   pmcorrect.method = "pmonly",
   summary.method = "medianpolish");
```

```r
> eset1.mu <- apply(exprs(eset1),1,"mean");
> eset1.var <- apply(exprs(eset1),1,"var");
```
So, how do we compute MA plots here?

Normally, we are plotting the results from one chip against that from another. Here, we are working with two sets of results from the same chips, just using different methods for quantification.

\[
A1 \leftarrow \frac{\text{eset0.mu} + \text{eset1.mu}}{2};
\]

\[
M1 \leftarrow \frac{\text{eset0.mu} - \text{eset1.mu}}{2}; \ # \ not \ quite.
\]

\[
M2 \leftarrow \frac{\text{eset0.var}}{\text{eset1.var}}; \ # \ still \ not \ quite.
\]

\[
M3 \leftarrow \log_2\left(\frac{\text{eset0.var}}{\text{eset1.var}}\right);
\]
Checking “none” against “scaling”

This initial plot was driven by outliers (not now). Tweak.

\[d0 \leftarrow 0.0001; \]
\[M4 \leftarrow \log2\left(\frac{\text{eset0.var} + d0}{\text{eset1.var} + d0}\right); \]
Checking “none” against “scaling”

> sum(eset1.var < eset0.var)

Not that stark – 96 times out of 150, constant scaling gives lower variability. This is a small (fake) array.
Checking “scaling” against “quantiles”

Not that stark – 83 times out of 150, quantile scaling gives lower variability.

repeat with Dilution, now that we know what we want to do.
Dilution: “none” against “scaling”

Here, 12615 times out of 12625, constant scaling gives lower variability. Mean log diff: 4.65
Dilution: “scaling” against “quantiles”

Here, 9477 times out of 12625, quantile scaling gives lower variability. Mean log diff: 0.98
What didn’t they do?

Our comparison of normalization methods here focused on reducing variability, and it assumed that a particular type of background correction (rma) and summarization (median polish) had been employed.

But we saw that different background correction methods led to different shapes in the distributions of probe intensities. If we use “mas” as the background subtraction method, are the differences between the normalization methods still as stark?
Dilution: “none” against “scaling”, MAS BG

Here, 12600 times out of 12625, constant scaling gives lower variability. Mean log diff: 5.40
Dilution: “scaling” vs “quantiles”, MAS BG

Here, 7937 times out of 12625, quantile scaling gives lower variability. Mean log diff: 0.265
Normalizing on Glass?

Main difference is two-color setup

Some general recommendations:

Normalize channels to each other first, then normalize log ratios across chips.

do dye swaps

MA plots, loess fits, and pictures
Project Normal: A Cautionary Tale

Pritchard, Hsu, Delrow and Nelson

Project Normal: Defining Normal Variance in Mouse Gene Expression

Data set used for the third annual Critical Analysis of Microarray Data (CAMDA 2002)
Their Initial Goals

The goal of many microarray studies is to identify genes that are “differentially expressed”.

Relative to what?

Differences larger in scale than those that would be encountered due to “normal” or technical variation.

Try to assess the fraction of genes exhibiting a large mouse-to-mouse heterogeneity in the absence of structure.
Their Experimental Design

Eighteen Samples

- Six C57BL6 male mice
- Three organs: kidney, liver, testis

Reference Material

- Pool all eighteen mouse organs

Replicate microarray experiments using two-color fluorescence with common reference and dye swaps

- Four experiments per mouse organ, 2 each dye
Their Analysis

Print-tip specific intensity dependent loess normalization

Perform F-tests on log(Exp/Ref) for each gene to see if mouse-to-mouse variance exceeds the array-to-array variance
The Data Supplied

Images

One quantification file each for kidney, liver and testis.

CDNA ID, Cluster ID, Title, Block, Column, Row

F635 Median M1K3_1, B635 Median M1K3_1
F532 Median M1K3_1, B532 Median M1K3_1

Mouse 1, Kidney Sample in Cy3 channel, first replicate.
Why We Got Involved

All in all, the analysis described looks pretty good. F-tests on log ratios seem reasonable, and the preprocessing steps they used are fairly standard. Furthermore, the images looked fairly clean.

“Fairly standard” \neq correct

For this data, we think that loess normalization is incorrect.
What Loess Looks Like for 1 Array

M2L5.1

Log(Reference/Liver) vs. Abundance
Why Loess Normalization?

Most normalization methods assume:

- Distributions of intensities are the same in the two channels
- Most genes do not change expression
- The number of overexpressed genes is about the same as the number of underexpressed genes

Loess normalization tries to force the distributions in the two channels to match, believing that differences are attributable to technology.
Why We Think It’s Wrong

Same in All Organs

Kidney

Reference

Kidney Specific

Kidney

Reference

Liver or Testis Specific

Kidney

Reference

© Copyright 2004-2007 Kevin R. Coombes and Keith A. Baggerly GS01 0163: ANALYSIS OF MICROARRAY DATA
Simulated Data Using Our Approach
Are We Right? Checking the Dye Swaps

M2L3.1
Log(Liver/Reference) vs Abundance

M2L3.2
Log(Liver/Reference) vs Abundance

M2L5.1
Log(Reference/Liver) vs Abundance

M2L5.2
Log(Reference/Liver) vs Abundance
Interpretation

- Distributions of intensities are different in the two channels
- Difference is NOT caused by arrays, dyes, or technology
- Difference is inherent in the choice of reference material
So, How Do We Normalize This Data?

Normalize channels separately

Divide by 75^{th} percentile (magic)

Multiply by 10 (arbitrary, equalizes scale)

Set threshold at 0.5 (more magic)

Log transform
Normalization Isn’t Perfect (1)

Same tissue type, all with RMA.
Normalization Isn’t Perfect (2)

Profile Correlations

Correlations, with run date dividers.
Normalization Isn’t Perfect (3)

Correlations, high values shown.