Lecture 20: Genome Browsing

- Annotation Environments in R
- AnnBuilder: Rolling Your Own Annotations
- The UCSC Genome Browser
- Chromosome Locations
- Building a Custom Track
- Viewing Your Custom Track
- Thoughts about TCGA
Documentation for the AnnBuilder Package

AnnBuilder

Bioconductor annotation data package builder

Processing annotation data from public data repositories and building annotation data packages or XML data documents using the source data.

Author
J. Zhang

Maintainer
J. Zhang

Vignettes
(Documentation)

Package Downloads

Source
AnnBuilder_1.10.5.tar.gz

Windows binary
AnnBuilder_1.10.5.zip

OS X binary
AnnBuilder_1.10.5.tar.gz

Details

bioCViews
Annotation, Microarray

Depends
R, methods, Biobase, XML, annotate, utils, RSQLite

Suggests

Imports

SystemRequirements
Annotation Environments in R

For most Affymetrix arrays, annotation packages are available directly (and automatically) from BioConductor whenever you need them. These packages were built using AnnBuilder.

You can load one of these packages as follows:

```r
> require(hgu95av2.db)
```

To see what is in an annotation package, use its name as a function:

```r
> hgu95av2()
```

Quality control information for hgu95av2:

This package has the following mappings:
INTRODUCTION TO MICROARRAYS

hgu95av2ACCNUM has 12625 mapped keys (of 12625 keys)
hgu95av2ALIAS2PROBE has 37934 mapped keys (of 37934 keys)
hgu95av2CHR has 11957 mapped keys (of 12625 keys)
hgu95av2CHRLENGTHS has 25 mapped keys (of 25 keys)
hgu95av2CHRLOC has 11789 mapped keys (of 12625 keys)
hgu95av2CHRLOCEND has 11789 mapped keys (of 12625 keys)
hgu95av2ENSEMBL has 11639 mapped keys (of 12625 keys)
hgu95av2ENSEMBL2PROBE has 9021 mapped keys (of 9021 keys)
hgu95av2ENTREZID has 11960 mapped keys (of 12625 keys)
hgu95av2ENZYME has 1978 mapped keys (of 12625 keys)
hgu95av2ENZYME2PROBE has 725 mapped keys (of 725 keys)
hgu95av2GENENAME has 11960 mapped keys (of 12625 keys)
hgu95av2GO has 11363 mapped keys (of 12625 keys)
hgu95av2GO2ALLPROBES has 9581 mapped keys (of 9581 keys)
hgu95av2GO2PROBE has 6774 mapped keys (of 6774 keys)
hgu95av2MAP has 11919 mapped keys (of 12625 keys)
hgu95av2OMIM has 10350 mapped keys (of 12625 keys)
hgu95av2PATH has 4585 mapped keys (of 12625 keys)
hgu95av2PATH2PROBE has 203 mapped keys (of 203 keys)
hgu95av2PFAM has 11878 mapped keys (of 12625 keys)
hgu95av2PMID has 11898 mapped keys (of 12625 keys)
hgu95av2PMID2PROBE has 206993 mapped keys (of 206993 keys)
hgu95av2PROSITE has 11878 mapped keys (of 12625 keys)
hgu95av2REFFSEQ has 11883 mapped keys (of 12625 keys)
hgu95av2SYMBOL has 11960 mapped keys (of 12625 keys)
hgu95av2UNIGENE has 11905 mapped keys (of 12625 keys)
hgu95av2UNIPROT has 11764 mapped keys (of 12625 keys)

Additional Information about this package:
DB schema: HUMANCHIP_DB
DB schema version: 1.0
Organism: Homo sapiens
Date for NCBI data: 2009-Mar11
Date for GO data: 200903
Date for KEGG data: 2009-Mar10
Date for Golden Path data: 2008-Sep3
Date for IPI data: 2009-Mar03
Date for Ensembl data: 2009-Mar6
Getting Annotations From Environments

Each of the items in the package is an environment, which computer scientists may recognize better if we tell them it is a hash table. The key into the probe-based hash table environments is the manufacturers identifier (i.e., an Affymetrix probeset id such as 1854_at).

```r
> get("1854_at", hgu95av2MAP)
[1] "20q13.1"
> get("1854_at", hgu95av2CHRLOC)
  20
  41729122
> get("1854_at", hgu95av2ENTREZID)
[1] "4605"
```
More Getting Annotations From Environments

def get("1854_at", hgu95av2REFSEQ):
 [1] "NM_002466" "NP_002457"

> summary(hgu95av2REFSEQ)
REFSEQ map for chip hgu95av2 (object of class "AnnDbBimap")

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lkeyname: probe_id (Ltablename: probes)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Rkeyname: accession (Rtablename: refseq)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>direction: L --> R</td>
</tr>
</tbody>
</table>

def get("NM_002466", revmap(hgu95av2REFSEQ))
[1] "1854_at"
AnnBuilder: Rolling Your Own Annotations

We recently had to analyze some data from an Agilent 44K two-color glass microarray. The corresponding annotation package was not available, so we had to build our own. Finding the manufacturers basic annotations was a nontrivial task. We started at the web site (http://www.agilent.com), then followed the link under “Products and Services” for “Life Sciences” and “Instruments and Systems” to get to the “DNA Microarrays” page.
Follow the Link for “Human Genome, Whole”
Try “Download Gene Lists (Specifications)”
Reading the Feature Info

In any event, we finally obtained a pair of files that contained the mappings from spots to genomic material. We used the `read.table` command to get this file into R:

```r
featureInfo <-
  read.table(file.path("GeneList", "014850_D_GeneList_20090416.txt"),
  header = TRUE, row.names = NULL,
  sep = "\t", quote = "",
  comment.char = "")
```
Looking at the Feature Info

Here is part of the file:

```r
> colnames(featureInfo)
[1] "ProbeID"    "TargetID"    "GeneSymbol"
[4] "GeneName"   "Accessions" "Description"
> featureInfo[1:5,c("ProbeID","Accessions")]

<table>
<thead>
<tr>
<th>ProbeID</th>
<th>Accessions</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_24_P919016</td>
<td>gb</td>
</tr>
<tr>
<td>A_32_P27041</td>
<td>gb</td>
</tr>
<tr>
<td>A_24_P693768</td>
<td>gb</td>
</tr>
<tr>
<td>A_24_P475014</td>
<td>gb</td>
</tr>
<tr>
<td>A_24_P456043</td>
<td>gb</td>
</tr>
</tbody>
</table>
```

© Copyright 2004–2009 KR Coombes, KA Baggerly, BM Broom

GS01 0163: ANALYSIS OF MICROARRAY DATA
What We Need

The critical information is given by the columns that contain the manufacturers identifier (ProbeID) and the GenBank or RefSeq accession numbers (Accessions). Ideally, we want one type of annotation.

```r
allAnnotations <- as.character(featureInfo[, "Accessions"])
splitAnnotations <- strsplit(allAnnotations, "\\|")
firstAnnotation <- lapply(splitAnnotations, function(x){x[1]})
table(unlist(firstAnnotation))
```

<table>
<thead>
<tr>
<th>Ens</th>
<th>GB</th>
<th>Ref</th>
<th>THC</th>
</tr>
</thead>
<tbody>
<tr>
<td>909</td>
<td>7988</td>
<td>26631</td>
<td>2441</td>
</tr>
</tbody>
</table>
What We Need

The function we are going to use to build annotations requires only these two columns to be present in a file. So we make them available for a few genes:

secondAnnotation <-
 unlist(lapply(splitAnnotations, function(x) {x[2]}))
temp <-
 cbind(as.character(featureInfo[, "ProbeID"]),
 secondAnnotation)
write.table(temp[1:10,], "agilentGenesShort.tsv",
 sep="\t", quote=FALSE, col.names=NA)
Setting Up the Annotation Package

```r
> library(AnnBuilder)
> baseName <- "agilentGenes.tsv"
> baseType <- "gb"
> srcUrls <-
>     getSrcUrl("all",
>              organism = "Homo sapiens")
> myDir <- getwd()
```
Building the Annotation Package

The next command takes a very long time, since it makes calls to databases all over the internet for every one of the 44,000 probes on the array.

```
ABPkgBuilder(baseName = baseName,
    srcUrls = srcUrls, baseMapType = baseType,
    pkgName = "Agilent44K", pkgPath = myDir,
    organism = "Homo sapiens", version = "1.0",
    author = list(authors = "krc@mdacc.tmc.edu",
                  maintainer = "krc@mdacc.tmc.edu"),
    fromWeb = TRUE)
```
Producing the Final Package

This command produces the source for a package, which must still be compiled and zipped into a binary package that can be installed easily. This task is most easily accomplished on a UNIX based machine:

helios% R CMD build Agilent44K
helios% R CMD build --binary Agilent44K

You can then convert the resulting .tar.gz file to a .zip file, which is the preferred form for distributing a Windows package.

You can check out the results by getting the annotation package from our course web site.
The Agilent 44K Annotations

> library(Agilent44K)
> Agilent44K()

Quality control information for Agilent44K
Date built: Created: Sun Sep 03 07:50:38 2006

Number of probes: 41001
Probe number mismatch: None
Probe mismatch: None

Mappings found for probe based rda files:
Agilent44KACCNUM found 41001 of 41001
Agilent44KCHR found 31185 of 41001
Agilent44KCHRLOC found 28795 of 41001
Agilent44KENZYME found 3056 of 41001
Agilent44KGENENAME found 27824 of 41001
Introduction to Microarrays

Agilent44KGO found 23644 of 41001
Agilent44KLOCUSID found 31224 of 41001
Agilent44KMAP found 30939 of 41001
Agilent44KOMIM found 17942 of 41001
Agilent44KPATH found 6715 of 41001
Agilent44KPMID found 30361 of 41001
Agilent44KREFSEQ found 30057 of 41001
Agilent44KSYMBOL found 31217 of 41001
Agilent44KUNIGENE found 31010 of 41001

Mappings found for non-probe based rda files:

Agilent44KCHRLengths found 25
Agilent44KENZYME2PROBE found 794
Agilent44KGO2ALLPROBES found 6883
Agilent44KGO2PROBE found 5117
Introduction to Microarrays

Agilent 44K ORGANISM found 1
Agilent 44K PATH2 PROBE found 183
Agilent 44K PFAM found 21902
Agilent 44K PMID2 PROBE found 131104
Agilent 44K PROSITE found 15055
The UCSC Genome Browser

http://genome.ucsc.edu/

About the UCSC Genome Bioinformatics Site

This site contains the reference sequence and working draft assemblies for a large collection of genomes. It also provides a portal to the ENCODE project.

We encourage you to explore these sequences with our tools. The Genome Browser zooms and scrolls over chromosomes, showing the work of annotators worldwide. The Gene Sorter shows expression, homology and other information on groups of genes that can be related in many ways. Blat quickly maps your sequence to the genome. The Table Browser provides convenient access to the underlying database. VisiGene lets you browse through a large collection of *in situ* mouse and frog images to examine expression patterns.

News

To receive announcements of new genome assembly releases, new software features, updates and training seminars by email, subscribe to the genome-announce mailing list.

6 October 2006 - Announcing Upgraded Custom Tracks Tool:

We are pleased to announce the release of an upgraded software tool in the Genome Browser collection — the Custom Tracks tool.

The new Custom Tracks Tool provides more flexibility and a more user-friendly interface for creating and managing your custom tracks than the tool it replaces.
Follow the Link to “Genome Browser”

The UCSC Genome Browser was created by the Genome Bioinformatics Group of UC Santa Cruz. The March 2006 human reference sequence (NCBI Build 36.1) was produced by the International Human Genome Sequencing Consortium. Sample position queries

A genome position can be specified by the accession number of a sequenced genomic clone, an mRNA or EST or STS marker, or a cytological band, a chromosomal coordinate range, or keywords from the GenBank description of an mRNA. The following list shows examples of valid position queries for the human genome. See the User’s Guide for more information.

Request: Genome Browser Response:

chr7 Displays all of chromosome 7
INTRODUCTION TO MICROARRAYS

Press “Submit” to Start Browsing
About the Genome Browser

The genome browser lets you see a great deal of information laid out along the latest completed build of the human genome. The most obvious thing to look at are the known genes, which are typically displayed in such a way that you can see the individual introns and exons (provided you zoom in closely).

For our purposes (as people who analyze microarray data), an extremely interesting feature of the Genome Browser is that it lets you add your own “Custom Tracks”, which is their name for a set of annotations you can define.
Custom Tracks

To learn about the genome (custom) tracks, go to the FAQ.
BED Format

BED Lines

BED format provides a flexible way to define the data lines that are displayed in an annotation track. BED lines have three required fields and nine additional optional fields. The number of fields per line must be consistent throughout any single set of data in an annotation track.

The first three required BED fields are:

1. **chrom** - The name of the chromosome (e.g. chr3, chrY, chr2_random) or scaffold (e.g. scaffold10671).
2. **chromStart** - The starting position of the feature in the chromosome or scaffold. The first base in a chromosome is numbered 0.
3. **chromEnd** - The ending position of the feature in the chromosome or scaffold. The **chromEnd** base is not included in the display of the feature. For example, the first 100 bases of a chromosome are defined as **chromStart=0, chromEnd=100**, and span the bases numbered 0-99.

The 9 additional optional BED fields are:

4. **name** - Defines the name of the BED line. This label is displayed to the left of the BED line in the Genome Browser window when the track is open to full display mode or directly to the left of the item in pack mode.
5. **score** - A score between 0 and 1000. If the track line **useScore** attribute is set to 1 for this annotation data set, the **score** value will determine the level of gray in which this feature is displayed (higher numbers = darker gray).
6. **strand** - Defines the strand - either '+' or '-'.
7. **thickStart** - The starting position at which the feature is drawn thickly (for example, the start codon in gene displays).
8. **thickEnd** - The ending position at which the feature is drawn thickly (for example, the stop codon in gene displays).
9. **itemRgb** - An RGB value of the form R,G,B (e.g. 255,0,0). If the track line **itemRgb** attribute is set to "On", this RGB value...
Chromosome Locations

You can read more of the custom track documentation on your own; here, we are going to focus on how to build a custom track in R. The first thing we want to point out is that we need to know both the starting base location and the ending base location in order to build a custom track. Thus, the CHRLOC annotations that AnnBuilder constructs are not adequate.

Fortunately, we can get start and end points directly from the folks at the UCSC Genome Browser. Go back to the main page, then follow the link for “Downloads”.
UCSC Download Page

Sequence and Annotation Downloads

This page contains links to sequence and annotation data downloads for the genome assemblies featured in the UCSC Genome Browser. Table downloads are also available via the Genome Browser FTP server. For quick access to the most recent assembly of each genome, see the current genomes directory. This directory may be useful to individuals with automated scripts that must always reference the most recent assembly.

To view the current descriptions and formats of the tables in the annotation database, use the “describe table schema” button in the Table Browser. The Description of the annotation database page (infrequently maintained) also provides descriptions of selected tables in the database.

All tables in the Genome Browser are freely usable for any purpose except as indicated in the README.txt files in the download directories. To view restrictions specific to a particular data set, click on the corresponding download link and review the README text. These data were contributed by many researchers, as listed on the Genome Browser credits page. Please acknowledge the contributor(s) of the data you use.

- Human
- Chimpanzee
- Rhesus
- Dog
- Cow
- Mouse
- Rat
Follow the link for “Human”

Human Genome

Mar. 2006 (hg18)

- Full data set
- Data set by chromosome
- Annotation database
- Human self alignments
 - Human/Chimp (panTro2) pairwise alignments
 - Human/Chimp (panTro1) pairwise alignments
 - Human/Rhesus (rheMac2) pairwise alignments
 - Human/Cow (bosTau2) pairwise alignments
 - Human/Dog (canFam2) pairwise alignments
 - Human/Mouse (mm8) pairwise alignments
 - Human/Mouse (mm7) pairwise alignments
 - Human/Rat (m4) pairwise alignments
 - Human/Opossum (monDom4) pairwise alignments
 - Human/Chicken (galGal3) pairwise alignments
 - Human/Chicken (galGal2) pairwise alignments
 - Human/Zebrafish (danRer4) pairwise alignments
In “Annotation Database”, Scroll To “refGene”
Using the RefGene locations in R

Load the file.

```r
> refgene <- read.table("refGene.txt", header = FALSE,
  sep = "\t", comment.char = "", quote = "")
```

Add the column names, which are not included.

```r
```

We are going to ignore the intron and exon boundaries. We are also going to remove duplicate entries, which seem for some reason to exist; the search to identify these is long.
More RefGene

```r
> temprg <- refgene[, c(1:9, 13:15)]
> omit <- unlist(lapply(levels(temprg$name),
  function(x, n) {
    which(n == x)[1]
  }, as.character(temprg$name)))
> summary(omit)
> refgene <- temprg[omit, ]
> rownames(refgene) <-
  as.character(refgene[, "name"])

Finally, we save this as a binary object that we can load later.

> save(refgene, file = "refgene.rda")
```
Linking the Agilent Array to RefGene locations

First, convert the environment in the AnnBuilder package for the Agilent 44K arrays to a list.

```r
> temp2 <- as.list(Agilent44KREFSEQ)
```

Next, we produce a list that maps the annotations to the spots. This code works because the `Accessions` column of the `featureInfo` object contains RefSeq IDs (primarily), which are the names of the rows in the `temp2` object we just created.

```r
> ag.annoList <- temp2[as.character(featureInfo[, "Accessions")
```

(filtering for RefSeq here)
Alternative Splicing

> ag.annoList[1]

A_23_P80353

[1] "NM_001003689" "NP_001003689" "NM_031488"

[4] "NP_113676"

Notice that some probes are associated with more than one RefSeq gene; this happens because different isoforms (produced by alternative splicing) of the same gene have different RefSeq identifiers. That is, the same piece of DNA can give rise to different mRNA molecules. So, we now search through and select just the first annotation for each spot.
Grabbing the First

```r
> agilent.lc <- unlist(lapply(ag.annoList, length))
> agilentREFSEQ <- unlist(lapply(ag.annoList, function(x) {
  if (length(x) == 0) {
    return(NA)
  }
  if (length(x) == 1) {
    return(x)
  }
  idx <- 1
  while (idx <= length(x)) {
    if (x[[idx]] == "") {
      idx <- idx + 1
      next
    }
  }
})
```
return(x[[idx]])
}
return(NA)
})

> agilentREFSEQ[agilentREFSEQ == ""] <- NA
Checking the Output

> length(agilentREFSEQ)
[1] 41675
> sum(!is.na(agilentREFSEQ))
[1] 30612

Finally, we use the updated RefSeqs (that we just constructed in the agilentREFSEQ object) as indices into the refgene chromosome locations above. This computation is also slow, since it uses a search in a list instead of in a hash.
Checking More Output

```r
> agilent2refgene <- refgene[agilentREFSEQ, ]
> agilent2refgene[1:3, ]
```

<table>
<thead>
<tr>
<th>bin</th>
<th>name</th>
<th>chrom</th>
<th>strand</th>
<th>txStart</th>
<th>txEnd</th>
<th>cdsStart</th>
<th>cdsEnd</th>
<th>exonCount</th>
<th>cdsStartStat</th>
<th>cdsEndStat</th>
</tr>
</thead>
<tbody>
<tr>
<td>889</td>
<td>NM_001003689</td>
<td>chr22</td>
<td>+</td>
<td>39931258</td>
<td>39957220</td>
<td>39931312</td>
<td>39953547</td>
<td>18</td>
<td>cmpl</td>
<td>cmpl</td>
</tr>
<tr>
<td>98</td>
<td>NM_005503</td>
<td>chr15</td>
<td>+</td>
<td>27001144</td>
<td>27197806</td>
<td>27133379</td>
<td>27196628</td>
<td>14</td>
<td>cmpl</td>
<td>cmpl</td>
</tr>
<tr>
<td>795</td>
<td>NM_004672</td>
<td>chr1</td>
<td>-</td>
<td>27554258</td>
<td>27565924</td>
<td>27554468</td>
<td>27565675</td>
<td>29</td>
<td>cmpl</td>
<td>cmpl</td>
</tr>
</tbody>
</table>
```
Building a Custom Track

We analyzed the Agilent 44K microarray data using a linear model. The results are contained in an object called ourResults:

```r
> summary(ourResults)

 UntreatedMeanLog Beta PValue
 Min. :4.870 Min. :-3.15530 Min. :2.024e-09
 1st Qu.:6.907 1st Qu.:-0.19572 1st Qu.:8.142e-02
 Median :8.058 Median : 0.05431 Median :2.749e-01
 Mean :8.742 Mean : 0.04300 Mean :3.511e-01
 3rd Qu.:9.982 3rd Qu. : 0.10075 3rd Qu.:5.823e-01
 Max. :16.523 Max. : 3.27672 Max. :1.000e+00
```
Computing a Displayable Score

We are going to use the p-values to decide which genes to display, and we are going to use the coefficient (Beta) to compute a score that shows the amount of differential expression. The allowed scores for a custom track range from 0 to 1000. Since the true values of Beta range between $-3$ and $+3$ (more or less), we are going to multiply by 300 to get a useful score.

```
score <- 300 * ourResults[, "Beta"]
score[score > 1000] <- 1000
score[score < -1000] <- -1000
score <- abs(score)
```
### A Track Data Frame

Now we build a data frame that includes the information we need for a custom track in the desired order:

```r
> temp <- data.frame(agilent2refgene[, c("chrom", "txStart", "txEnd", "name2")], score = score, strand = agilent2refgene[, "strand"])
> temp[1:3, 1:5]

<table>
<thead>
<tr>
<th>chrom</th>
<th>txStart</th>
<th>txEnd</th>
<th>name2</th>
<th>score</th>
</tr>
</thead>
<tbody>
<tr>
<td>NM_001003689</td>
<td>chr22</td>
<td>39931258</td>
<td>39957220</td>
<td>96.902254</td>
</tr>
<tr>
<td>NM_005503</td>
<td>chr15</td>
<td>27001144</td>
<td>27197806</td>
<td>74.415391</td>
</tr>
<tr>
<td>NM_004672</td>
<td>chr1</td>
<td>27554256</td>
<td>27565924</td>
<td>2.281971</td>
</tr>
</tbody>
</table>
```

© Copyright 2004–2009 KR Coombes, KA Baggerly, BM Broom

GS01 0163: Analysis of Microarray Data
**Significant Overexpressed Genes**

We built this data frame for all genes; now we are going to select the ones that are significant ($p$-value < 0.02) and are overexpressed in response to the treatment ($\beta > 0$). We further restrict to those genes that we are able to map.

```r
> trackInfo <- temp[!is.na(temp[, "chrom"])] & ourResults[, "PValue"] < 0.02 & ourResults[, "Beta"] > 0,
```

We also have to create a header line that tells the browser to make use of the scores.

```r
> trackheader <- paste("track name=upNormal", "description="Increased in Normal Cells"", "useScore=1 color=0,60,120")
```
Writing the Track Info to a File

We can now write the header line followed by the track data:

```r
> write(trackheader, file = "upNormalRNA.tsv", append = FALSE)
> write.table(trackInfo, file = "upNormalRNA.tsv", append = TRUE, quote = FALSE, sep = "\t", row.names = FALSE, col.names = FALSE)
```
Finally, we do the same thing for the genes that are underexpressed.

```r
> trackInfo <- temp[!is.na(temp[, "chrom"])] & ourResults[, "PValue"] < 0.02 & ourResults[, "Beta"] < 0,]
> trackheader <- paste("track name=downNormal", "description="Decreased in Normal Cells"", "useScore=1 color=100,50,0")
> write(trackheader, file = "dnNormalRNA.tsv", append = FALSE)
> write.table(trackInfo, file = "dnNormalRNA.tsv", append = TRUE, quote = FALSE, sep = "\t", row.names = FALSE, col.names = FALSE)
```
Viewing Your Custom Track

Now we can return to the genome browser and look at our custom tracks.

Display your own data as custom annotation tracks in the browser. Data must be formatted in BED, GFF, GTF, WIG or PSL formats. To configure the display, set track and browser line attributes as described in the User's Guide. Publicly available custom tracks are listed here. Examples are here.
http://bioinformatics.mdanderson.org/MicroarrayCourse/customTrack.html

Agilent Differential Expression Study

This page is a front end to the UCSC "Golden Path" Human Genome Browser. When you press the "Submit" button, it will upload custom tracks to the browser to represent the locations that are differentially expressed in normal cells. There are two annotation tracks available:

http://bioinformatics.mdanderson.org/MicroarrayCourse/upNormal
http://bioinformatics.mdanderson.org/MicroarrayCourse/dnNormal
Displaying Our Tracks
Searching for a Gene
Searching for a Gene

Known Genes

TP53 (NM 000546) at chr1:7512465-7531642 - tumor protein p53
TP53 (DQ186649) at chr1:7512447-7531524 - Del133 p53 gamma isoform.
TP53 (DQ186649) at chr1:7512447-7531524 - Del133 p53 gamma isoform.
TP53 (DQ186648) at chr1:7512447-7531524 - Del133 p53 beta isoform.
TP53 (DQ186648) at chr1:7512447-7531524 - Del133 p53 beta isoform.
C20orf5 (NM 014477) at chr20:44345935-4440371 - TP53-target gene 5 protein
TP53AP1 (NM 007233) at chr7:86792477-86812767 - TP53 activated protein 1
TP53RR (BC019621) at chr20:44747581-44751486 - TP53 regulating kinase.
PERP (NM 022121) at chr6:138453619-138470289 - PERP, TP53 apoptosis effector
PFRM (NM 019845) at chr2:154042098-154043568 - PFRM1, TP53 dependent G2 arrest mediator
RRM2B (NM 015713) at chr8:103285907-103320252 - ribonucleotide reductase M2 B (TP53 inducible
TP53 (BC003596) at chr1:7512465-7531511 - Del133 p53 isoform.
VRK1 (BC013761) at chr14:96333459-96417696 - vaccinia related kinase 1
TEC3INP1 (NM 033285) at chr8:96007377-96030767 - tumor protein p53 inducible nuclear protein
TEC3INP1 (AF409114) at chr8:96007377-96030767 - tumor protein p53 inducible nuclear protein 1
UBE2L6 (BC032491) at chr11:57075712-57091756 - ubiquitin-conjugating enzyme E2L 6
PFPT1 (NM 015316) at chr14:103269842-103383555 - protein phosphatase 1, regulatory (inhibi
TEC3BE2 (BC058918) at chr1:222034413-222100255 - tumor protein p53 binding protein, 2
BNC1 (NM 003633) at chr5:73958991-73972273 - ectodermal-neural cortex (with B16-like domain
DDMK (BC042418) at chr17:56032412-56096616 - protein phosphatase 1D magnesium-dependent, del
TEC3BE2 (NM 001031665) at chr17:222034413-222100255 - tumor protein p53 binding protein, 2 iso
GNT1 (NM 206825) at chr3:52694576-52703546 - guanine nucleotide binding protein-like 3
ING5 (NM 032329) at chr2:242255129-242317563 - inhibitor of growth family, member 5
PDRG1 (NM 030815) at chr20:29996420-30003544 - p53 and DNA damage-regulated protein
ING4 (NM 016162) at chr12:6629707-6642585 - inhibitor of growth family, member 4 isoform 1
Searching for a Gene

UCSC Genome Browser on Human Mar. 2006 Assembly

Click on a feature for details. Click on base position to zoom in around cursor. Click on left mini-buttons for track-specific options.

Tracks with lots of items will automatically be displayed in more compact modes.
Searching for a Gene

UCSC Genome Browser on Human Mar. 2006 Assembly

position/search chr17:7,202,421-7,841,687  jump clear size 639,267 bp. configure

Click on a feature for details.

move start  move end

Click on base position to
zoom in around cursor.
Comments on TCGA

What’s there?

from the *Broad*:
ht_hg_u133a

from *Harvard*:
hg-cgh-244a
hg-cgh-415k-g4124a
illumina-mrna-dge

from *Johns Hopkins*:
humanmethylilation27
Comments on TCGA (2)

from *Memorial Sloan-Kettering*:
hg_cgh_244a
cgh_1x1m_g4447a

from *U North Carolina*:
agilent4502a-07-2
agilent4502a-07-3
h_mirna_8x15K