GS01 0163
Analysis of Microarray Data

Keith Baggerly and Bradley Broom
Department of Bioinformatics and Computational Biology
MD Anderson Cancer Center
kabagg@mdanderson.org
bmbroom@mdanderson.org

31 August 2010
Lecture 0: Outline and Details

Welcome!

- Where are we?

- Why are we here?

- Who are we?

- What are we going to tell you about, and when?

- What do we assume you’re familiar with?

- Where and when can you find ???

- What are we going to ask of you?
So, where are we?

We will usually meet in to the GSBS library, BSRB S3.8351.

We will meet in the GSBS Conference Room, BSRB S3.8355, on two days: Thursday, October 7 and Thursday December 2.

Course meets Tuesdays and Thursdays from 3-4:30, starting August 31 and running through the middle of December (15 weeks, with one scheduled off day for Thanksgiving).
So, why are we here?

We want to learn about microarrays.

Microarrays have caught on as high-throughput assays for understanding molecular biology – they let us measure expression levels for thousands of genes in a single sample all at once.

This means new biology, and new data analysis.

We want to

- Understand how microarrays work and how they are analyzed.
- Perform some basic analyses of microarrays.

We’re going to dive in here; we hope to have you analyzing data this week or next.
Who are we?

Keith Baggerly, FCT 4.5016, kabagg@mdanderson.org,
(713) 563-4290

Bradley Broom, FCT 4.5006, bmbroom@mdanderson.org
(713) 792-2617

We’re faculty in the department of Bioinformatics and Computational Biology at MD Anderson. We’ve been working with microarray data for about 10 years now. We think we’ve done pretty well with it, and we’re going to trade off in telling you about it.
What are we going to tell you about, and when?

Week 1: How microarrays work, and Affymetrix file structures. The basics of dChip.

Week 3: Reviewing initial analyses. Introduction to R.

Week 4: Sample analysis using R/Bioconductor for Affymetrix.

Week 5: Reviewing R basics, quantification and normalization of Affymetrix data, Latin Square studies.

Week 6: Measures of differential expression (DE); R and DE.
What are we going to tell you about, and when?

Week 7: Experimental Design, linear models

Week 8: Clustering microarray data, diagnostics, validation.

Week 9: Classification.

Week 10: Genome Browsing, Pathways

Weeks 11-12: GSEA, Pooling Data

Week 13: Other Assays

Week 14: Reading the Literature (Thanksgiving)

Week 15: Student Presentations, TCGA
What do we assume you’re familiar with?

Some biology.

Some programming.

Some statistics.
Computing

Microarray datasets are large. One of our initial data sets will involve 100 Affy gene chips; the files take up 1.5G of disk space when uncompressed. Another dataset takes 4G.

The image files from some of the newest arrays (e.g., Affymetrix exon arrays) are 1.5G per array, so data summarization is a real issue.

We will be using lots of freeware, including dChip (Windows-based), R, and the Bioconductor repository.

We will use version 2.11.1 of R, and version 2.6 of BioConductor.

- R is usually updated twice per year, in April and October, without any consideration that that is the middle of our course.
Textbooks

Where can you find ???

- **Course web site** http://bioinformatics.mdanderson.org/MicroarrayCourse

- **Office hours**: T, Th, 4:30-5:30, HMB
 - Dr. Baggerly: FCT 4.5016
 - Dr. Broom: FCT 4.5006
What are we going to ask of you?

Grading: Homeworks (roughly every two weeks)

1. Homeworks can be worked on jointly.

2. Assignments submitted electronically, in a single file (zipped is fine), by midnight on the assigned due date.

3. Submissions should include figures, R code, and text.

We’re very interesting in getting good documentation for how analyses were performed. Thus, as we move into R we’ll also be talking about Sweave, which helps us track things better.

A project.