Lecture 7: Affymetrix, R, and BioConductor

- Microarray Data Structures
- Reading Affymetrix data with BioConductor
- Processing Affymetrix data
- Quantification = summarization
- Description of quantification methods
 - MAS 5.0
 - RMA
 - PDNN
- Quality control assessment
Microarray Data Structures

Recap: What information do we need in order to analyze a collection of microarray experiments?
Experiment/Sample Information

In even the simplest experimental designs, where we want to find out which genes are differentially expressed between two types of samples, we at least have to be told which samples are of which type.

In more complicated experimental designs, we may be interested in a number of additional factors. For example:

- In a study comparing cancer patients to healthy individuals, we may want to record the age and sex of the study subjects.

- In animal experiments, there may be a variety of different treatments that have to be recorded.
Data frames

The R object that holds this kind of information is a `data.frame`. Conceptually, a `data.frame` is just a two-dimensional table. By convention, they are arranged so that each row corresponds to an experimental sample and each column corresponds to one of the interesting factors.

<table>
<thead>
<tr>
<th>Array</th>
<th>Age</th>
<th>Sex</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td>41</td>
<td>M</td>
<td>cancer</td>
</tr>
<tr>
<td>a2</td>
<td>64</td>
<td>F</td>
<td>cancer</td>
</tr>
<tr>
<td>a3</td>
<td>56</td>
<td>M</td>
<td>healthy</td>
</tr>
<tr>
<td>a4</td>
<td>48</td>
<td>F</td>
<td>healthy</td>
</tr>
</tbody>
</table>

Data frames are particularly useful for this purpose in R, because they can hold textual factors as well as numeric ones.
Data frames

For most array studies, it is best to create a table of the interesting information and store it in a separate file such that:

- each row holds the information from one experiment, and
- column entries are separated by tab characters.

If you create the table in a spreadsheet program (like Excel), you should store it as a text file in “tab-separated-value” format.
Phenotypes

You can create a data frame in R from a file in tab-separated-value format using the `read.table` and `read.delim` commands. (You can also create them directly, as illustrated later.)

The `Biobase` package in BioConductor views the sample information as an extension of the notion of a data frame, which they call an `AnnotatedDataFrame` object. This object contains

- the “phenotype” information about the samples used in the experiment, and

- additional meta-information, such as “long” labels that can be used to identify the covariates (or factors) in the columns.
Mock data

Let’s create a fake data set.

First, we pretend to have measured 200 genes in 8 experimental samples:

```r
> fake.data <- matrix(rnorm(8*200), ncol=8)
```

Now we’ll create phenotype data about those samples. Bioconductor uses the `AnnotatedDataFrame` to describe the phenotype type:

- a data.frame to describe the columns of the expression matrix, and
- a meta data.frame to describe the variables in the data.frame.
So, we first create a table of fake phenotype data such that our first four samples are cancer patients and the last four are healthy:

```r
> sample.info <- data.frame(
+   spl=paste('A', 1:8, sep=''),
+   stat=rep(c('cancer', 'healthy'), each=4))
```

Then we create meta data.frame object giving more intelligible labels to our labels:

```r
> meta.info <- data.frame(labelDescription =
+   c('Sample Name', 'Cancer Status'))
```

Then we put them all together:

```r
> pheno <- new("AnnotateDataFrame",
+   data = sample.info,
+   varMetadata = meta.info)
```
> pheno

An object of class "AnnotatedDataFrame"

rowNames: 1, 2, ..., 8 (8 total)

varLabels and varMetadata description:

 spl : Sample Name
 stat : Cancer Status

> pData(pheno)

<table>
<thead>
<tr>
<th>spl</th>
<th>stat</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>cancer</td>
</tr>
<tr>
<td>A2</td>
<td>cancer</td>
</tr>
<tr>
<td>A3</td>
<td>cancer</td>
</tr>
<tr>
<td>A4</td>
<td>cancer</td>
</tr>
<tr>
<td>A5</td>
<td>healthy</td>
</tr>
<tr>
<td>A6</td>
<td>healthy</td>
</tr>
<tr>
<td>A7</td>
<td>healthy</td>
</tr>
<tr>
<td>A8</td>
<td>healthy</td>
</tr>
</tbody>
</table>
The object in BioConductor that links together a collection of expression data and its associated sample information is called an ExpressionSet.

```r
> my.experiments <- new("ExpressionSet",
+ exprs=fake.data, phenoData=pheno)
```
> my.experiments
ExpressionSet (storageMode: lockedEnvironment)
assayData: 200 features, 8 samples
 element names: exprs
phenoData
 sampleNames: 1, 2, ..., 8 (8 total)
 varLabels and varMetadata description:
 spl: Sample Name
 stat: Cancer Status
featureData
 featureNames: 1, 2, ..., 200 (200 total)
 fvarLabels and fvarMetadata description: none
experimentData: use 'experimentData(object)'
Annotation:
Warning

If you create a real `ExpressionSet` this way, you should ensure that the columns of the data matrix are in exactly the same order as the rows of the sample information data frame; the software has no way of verifying this property without your help.

You’ll also need to put together something that describes the genes used on the microarrays.
Where is the gene information?

The `ExpressionSet` object we have created so far lacks an essential piece of information: there is nothing to describe the genes. One flaw in the design of BioConductor is that it allows you to completely separate the biological information about the genes from the expression data. (This blithe acceptance of the separation is surprisingly common among analysts.)

Each `ExpressionSet` includes a slot called `annotation`, which is a character string containing the name of the environment that holds the gene annotations.

We’ll return to this topic later to discuss how to create these annotation environments.
Optional parts of an ExpressionSet

In addition to the expression data \((\text{exprs}) \) and the sample information \((\text{phenoData}) \), each ExpressionSet includes several optional pieces of information:

annotation name of the gene annotation environment

se.exprs matrix containing standard errors of the expression estimates

notes character string describing the experiment

description object of class MIAME describing the experiment
Demonstration data

For working with Affymetrix data, BioConductor includes a specialized kind of ExpressionSet called an AffyBatch.

The affydata package includes demonstration data from a dilution experiment. You can load it by typing

\[
\text{> library(affydata)}
\]
\[
\text{> data(Dilution)}
\]

These commands will create an AffyBatch object called Dilution that you can explore.
Peeking at what’s inside

> Dilution
AffyBatch object
size of arrays=640x640 features (12805 kb)
cdf=HG_U95Av2 (12625 affyids)
number of samples=4
number of genes=12625
annotation=hgu95av2
notes=

Note: The first time you access the data, BioConductor will automatically build an object with the correct gene annotations for the kind of array you are using; this may take a while, since it downloads all the information from the internet. Don’t be surprised if it takes a few minutes to display the response to the command.
Looking at the experimental design

> phenoData(Dilution)
An object of class "AnnotatedDataFrame"
sampleNames: 20A, 20B, 10A, 10B
varLabels and varMetadata description:
liver: amount of liver RNA hybridized to array in micrograms
sn19: amount of central nervous system RNA hybridized
scanner: ID number of scanner used

> pData(Dilution)

<table>
<thead>
<tr>
<th></th>
<th>liver</th>
<th>sn19</th>
<th>scanner</th>
</tr>
</thead>
<tbody>
<tr>
<td>20A</td>
<td>20</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>20B</td>
<td>20</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>10A</td>
<td>10</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10B</td>
<td>10</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>
A first look at an array

> image(Dilution[,1])
A summary view of four images

> boxplot(Dilution, col=1:4)
The distribution of feature intensities

\[\text{hist}(\text{Dilution}, \ col=1:4, \ lty=1) \]
Examining individual probesets

The **affy** package in BioConductor includes tools for extracting individual probe sets from a complete **AffyBatch** object. To get at the probe sets, however, you need to be able to refer to them by their “name”, which at present means their Affymetrix ID.

```r
> geneNames(Dilution)[1:3]
[1] "100_g_at" "1000_at" "1001_at"
> random.affyid <- sample(geneNames(Dilution), 1)
> # random.affyid <- '34803_at'
> ps <- probeset(Dilution, random.affyid)[[1]]
```

The **probeset** function returns a list of probe sets; the mysterious stuff with the brackets takes the first element from the list (which only had one ...).
A probeset profile in four arrays

```R
> plot(c(1,16), c(50, 900), type='n',
+ xlab='Probe', ylab='Intensity')
> for (i in 1:4) lines(pm(ps)[,i], col=i)
```
Examining individual probesets

Let's add the mismatch probes to the graph:

> for (i in 1:4) lines(mm(ps)[,i], col=i, lty=2)
> plot(c(1,16), c(-80, 350), type='n',
+ xlab='Probe Pair', ylab='PM - MM')
> temp <- pm(ps) - mm(ps)
> for (i in 1:4) lines(temp[,i], col=i)
RNA degradation

Individual (perfect match) probes in each probe set are ordered by location relative to the 5’ end of the targeted mRNA molecule. We also know that RNA degradation typically starts at the 5’ end, so we would expect probe intensities to be lower near the 5’ end than near the 3’ end.

The **affy** package of BioConductor includes functions to summarize and plot the degree of RNA degradation in a series of Affymetrix experiments. These methods pretend that something like “the fifth probe in an Affymetrix probe set” is a meaningful notion, and they average these things over all probe sets on the array.
Visualizing RNA degradation

> degrade <- AffyRNAdeg(Dilution)
> plotAffyRNAdeg(degrade, col=1:4)
Reading Affymetrix data with BioConductor

The BioConductor affy package includes a the function, `ReadAffy`, that makes it easier to read in Affymetrix data and construct AffyBatch objects.

This function contains an optional graphical user interface to “make it easier to use”.

However, since we are interested in documenting things and making them reproducible, we should avoid using the (irreproducible) GUI.
ReadAffy

To create an AffyBatch object from the CEL files in the current directory, do the following:

```r
> library(affy)  # load the affy library
> fns <- list.celfiles(path.to.CEL.files,
+  full.names=TRUE)
> my.data <- ReadAffy(filenames=fns) # read CEL data
```

Note that paths in R are separated by forward slashes (/) not backslashes (\); this is a common source of confusion.
Getting started

We start by loading the basic Affymetrix R library.

> library(affy)

Loading required package: Biobase
Loading required package: tools

Welcome to Bioconductor

Vignettes contain introductory material. To view, type 'openVignette()'. To cite Bioconductor, see 'citation("Biobase")' and for packages 'citation(pkgname)

Loading required package: affyio
File locations

As we did with dChip, we have to let the system know where the files are located. In this example (as in most examples), all the CEL files are stored in a single directory. The associated sample information files are nearby.

```r
> datapath <- "G:/Public/Singh-Prostate-Affymetrix"
> celpath <- file.path(datapath, "CelFiles")
```

There is a function that makes it easy to get a list of the CEL files

```r
> filenames <- list.celfiles(celpath, full.names=TRUE)
> filenames[1:3]
```

```
[1] ".../N01__normal.CEL" ".../N02__normal.CEL"
[3] ".../N03__normal.CEL"
```
Reading AnnotatedDataFrames

We can read the same sample information file that we used for dChip into R and make it into an AnnotatedDataFrame:

```r
> adf <- read.AnnotatedDataFrame(file.path(datapath, "+ "subsamples.txt"), header = TRUE, sep = "\t", + row.names = 2)
> adf
```

rowNames: N01A, N58A, ..., T49B (20 total)

varLabels and varMetadata:
 Array.name: read from file
 Status: read from file
 Batch: read from file
 Cluster: read from file
Actually creating the annotations

As you just saw, the extra annotations are not created when you read a file this way. We prepared another file describing the columns.

```r
> tmp <- read.table(file.path(datapath, "explain.txt"),
+ header = TRUE, sep = "\t", quote = "",
+ row.names = "Id")
> varMetadata(adf) <- tmp
> rm(tmp)
> adf
```

rowNames: N01A, N58A, ..., T49B (20 total)

varLabels and varMetadata:

- **Array.name**: The CEL file name, without extension
- **Status**: Either "Normal" prostate or prostate "Tumor"
- **Batch**: One of four experimental run batches, from the DAT headers
- **Cluster**: One of two clusters based on our analysis in dChip
MIAME

MIAME = ”Minimum Information About a Microarray Experiment”

Here is a MIAME object for the Singh experiment:

```r
> miame <- new("MIAME", name = "Dinesh Singh",
+       lab = "William F. Sellers",
+       title = paste("Gene expression",
+                        "correlates of clinical",
+                        "prostate cancer behavior"),
+       pubMedIds = c("12086878"))
```

© Copyright 2004–2010 KR Coombes, KA Baggerly, and BM Broom

GS01 0163: Analysis of Microarray Data
Creating an AffyBatch

R (on a 32-bit machine) is unable to read all 103 CEL files into an AffyBatch at once. (We will talk later about how to get around some of these limitations.) In this case, the sample file we read in earlier actually only contains descriptions of 20 of the CEL files, which is an amount we can easily read.

```r
> filenames <- paste(pData(adf)$Array.name, 
+ "CEL", sep = ".")
> abatch <- read.affybatch(filenames = file.path(celpath, 
+ filenames), phenoData = adf, description = miame)
> rm(adf, miame)
```
The AffyBatch

Now we can look at a summary of what we have so far:

> abatch

AffyBatch object
size of arrays=640x640 features (11 kb)
cdf=HG_U95Av2 (12625 affyids)
number of samples=20
number of genes=12625
annotation=hgu95av2
notes=
BioConductor breaks down the low-level processing of Affymetrix data into four steps. The design is highly modular, so you can choose different algorithms at each step. It is highly likely that the results of later (high-level) analyses will change depending on your choices at these steps.

- **Background correction**

- **Normalization** (on the level of features = probes)

- **PM-correction**

- **Summarization**
Background correction

The list of available background correction methods is available from a function:

```r
> bgcorrect.methods()
```

[1] "mas" "none" "rma"

- **none** Do nothing
- **mas** Use the algorithm from MAS 5.0
- **rma** Use the RMA algorithm
Background correction in MAS 5.0

MAS 5.0 divides the microarray (more precisely, the CEL file) into 16 regions. In each region, the intensity of the dimmest 2% of features is used to define the background level. Each probe is then adjusted by a weighted average of these 16 values, with the weights depending on the distance to the centroids of the 16 regions.
Background correction in RMA

RMA takes a different approach to background correction. First, only PM values are adjusted, the MM values are not changed. Second, they try to model the distribution of PM intensities as a sum of

- exponential signal with mean λ
- normal noise with mean μ and variance σ^2 (truncated at 0 to avoid negatives).

If we observe a signal $X = x$ at a PM feature, we adjust it by

$$E(s|X = x) = a + b \frac{\phi(a/b) - \phi((x - a)/b)}{\Phi(a/b) + \Phi((x - a)/b) - 1}$$

where $b = \sigma$ and $a = s - \mu - \lambda\sigma^2$.
Comparing background methods

```r
> d.mas <- bg.correct(Dilution[, 1], "mas")
> d.rma <- bg.correct(Dilution[, 1], "rma")
> bg.with.mas <- pm(Dilution[, 1]) - pm(d.mas)
> bg.with.rma <- pm(Dilution[, 1]) - pm(d.rma)
```
> hist(bg.with.mas)
> hist(bg.with.rma)
> summary(data.frame(bg.with.mas, bg.with.rma))

<table>
<thead>
<tr>
<th></th>
<th>X20A</th>
<th>X20A.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>74.53</td>
<td>72.4</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>93.14</td>
<td>113.7</td>
</tr>
<tr>
<td>Median</td>
<td>94.35</td>
<td>114.9</td>
</tr>
<tr>
<td>Mean</td>
<td>94.27</td>
<td>112.1</td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>95.80</td>
<td>114.9</td>
</tr>
<tr>
<td>Max.</td>
<td>97.67</td>
<td>114.9</td>
</tr>
</tbody>
</table>
Difference in background estimates

On this array, RMA gives slightly larger background estimates, and gives estimates that are more nearly constant across the array. The overall differences can be displayed in a histogram.
> hist(bg.with.rma - bg.with.mas)
How big is 20 units?

```r
> tmp <- data.frame(pm(Dilution[, 1]), mm(Dilution[, + 1]))
> colnames(tmp) <- c("PM", "MM")
> summary(tmp)

<table>
<thead>
<tr>
<th></th>
<th>PM</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>76.0</td>
<td>77.3</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>137.0</td>
<td>120.3</td>
</tr>
<tr>
<td>Median</td>
<td>225.0</td>
<td>164.5</td>
</tr>
<tr>
<td>Mean</td>
<td>507.3</td>
<td>323.5</td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>489.0</td>
<td>313.0</td>
</tr>
<tr>
<td>Max.</td>
<td>23356.3</td>
<td>17565.3</td>
</tr>
</tbody>
</table>
```
Quantification = summarization

I’m going to avoid talking about normalization and PM correction for the moment, and jump ahead to summarization. This step is the critical final component in analyzing Affymetrix arrays, since it’s the one that combines all the numbers from the PM and MM probe pairs in a probe set into a single number that represents our best guess at the expression level of the targeted gene.

The available summarization methods, like the other available methods, can be obtained using a function call.

> express.summary.stat.methods()

[1] "avgdiff" "liwong" "mas"
[4] "medianpolish" "playerout" "pdnn"
expresso

The recommended way to put together all the steps for processing Affymetrix arrays in BioConductor is with the function `expresso`. Here is an example that blocks everything except the summarization:

```r
> tempfun <- function(method) {
+     expresso(Dilution, bg.correct = FALSE,
+             normalize = FALSE, pmcorrect.method = "pmonly",
+             summary.method = method)
+ }
> ad <- tempfun("avgdiff")
> al <- tempfun("liwong")
> am <- tempfun("mas")
> ar <- tempfun("medianpolish")
```
Bland-Altman (M-versus-A) plots

Early in the study of microarrays, several groups (including ours) introduced what have come to be known in the microarray world as “M-versus-A” plots or sometimes just MA-plots. Statisticians knew these as “Bland-Altman” plots long before anyone started studying microarrays, since they were among the first people to use them.

The problem being solved by a Bland-Altman MA-plot is that of providing a useful graphical display of two vectors of data, x and y, which typically represent two measurements that should (almost always) be the same. The first thing that comes to mind is to plot y against x in the usual way, and see how well the points follow the identity line $y = x$.
Bland-Altman (M-versus-A) plots

The difficulties with this simple approach are

1. Humans can recognize horizontal lines much more easily than the can recognize diagonal lines.

2. Different aspect ratios (i.e., different scales along the axes) can move the line away from the diagonal.

3. Deviations from a tilted diagonal line are hard to estimate accurately by eye.

The Bland-Altman solution is to rotate the plot by 45 degrees, which turns the diagonal line into a horizontal line. To do this, they plot the average \(\left(\frac{x + y}{2} \right) \) along the horizontal axis and the difference \((y - x) \) along the vertical axis.
MA-plots in BioConductor

The affy package includes a function called `mva.pairs` to make it easier to generate these plots. (You should also check out the `MAplot` function.) We are going to use this to compare the different quantification/summary methods.

```r
> temp <- data.frame(exprs(ad)[, 1], exprs(al)[, 1], exprs(am)[, 1], 2^exprs(ar)[, 1])
> dimnames(temp)[[2]] <- c("Mas4", "dChip", "Mas5", "RMA")
> mva.pairs(temp)
```
MVA plot

Mas4
Median: −0.47
IQR: 0.595

dChip
Median: 0.473
IQR: 0.567

Mas5
Median: −0.00603
IQR: 0.115

RMA
Median: 0.00354
IQR: 0.0727

Median: 0.0110
IQR: 0.0943

Median: 0.478
IQR: 0.591

Median: −0.6
IQR: 0.2

Median: 0.6
IQR: 0.2

Median: −0.2
IQR: 0.2

Median: 0.2
IQR: 0.2

Median: −0.6
IQR: 0.2

Median: 0.6
IQR: 0.2

Median: −0.2
IQR: 0.2

Median: 0.2
IQR: 0.2
Alternate preprocessing

It is possible that the differences we see in the MA-plots are caused because we did no processing before summarization. We will try again, but this time we will use `expresso` to correct background with the RMA method, perform quantile normalization, and just use the PM values for summarization.

```r
> tempfun <- function(method) {
+ expresso(Dilution,
+ bgcorrect.method = "rma",
+ normalize.method = "quantiles",
+ pmcorrect.method = "pmonly",
+ summary.method = method)
+ }
```
Alternate preprocessing

Now we repeat the same commands as before, which use the four different summarization methods on the same array and put them into a temporary data frame for display.

\begin{verbatim}
> ad <- tempfun("avgdiff")
> al <- tempfun("liwong")
> am <- tempfun("mas")
> ar <- tempfun("medianpolish")

> temp <- data.frame(exprs(ad)[, 1], exprs(al)[, 1], exprs(am)[, 1], 2^exprs(ar)[, 1])
> dimnames(temp)[[2]] <- c("Mas4", "dChip", "Mas5", "RMA")
> mva.pairs(temp)
\end{verbatim}
Comparison of summarization methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Median</th>
<th>IQR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mas4</td>
<td>-0.923</td>
<td>1.03</td>
</tr>
<tr>
<td>dChip</td>
<td>0.971</td>
<td>1.00</td>
</tr>
<tr>
<td>Mas5</td>
<td>0.00994</td>
<td>0.265</td>
</tr>
<tr>
<td>RMA</td>
<td>0.0171</td>
<td>0.171</td>
</tr>
</tbody>
</table>
How do the summarization methods work?

Recall first what we know about the oldest method for processing Affymetrix data, the AvDiff method of MAS4.0. This method

1. Uses the background-correction method described above, based on the bottom 2% of probes.

2. Normalizes by scaling the median intensity to a fixed value.

3. Computes the PM — MM differences.

4. Trims outliers and computes the average (mean) of the differences.
Review of dChip

We have also looked previously at the dChip method:

1. Normalizes using an “invariant set” method (described later).

2. Optionally uses either both PM and MM values or PM-only.

3. Fits a statistical model for sample i, and probe j,

$$MM_{ij} = \nu_j + \theta_i \alpha_j + \epsilon$$

$$PM_{ij} = \nu_j + \theta_i \alpha_j + \theta_i \phi_j + \epsilon$$

Focusing on the PM − MM differences, this model estimates the probe affinities ϕ_j and the expression values θ_i.
Improving Robustness: MAS 5.0

Affymetrix learned something from the modelling process. In particular, they noted the importance of multiplicative adjustments and statistical measures with some means of identifying outliers. They also noted that negative values from AvDiff just were not well received by biologists or statisticians.

They modified their algorithm in several ways. Instead of the straight MM value, they subtract a “change threshold” (CT) which is guaranteed to be lower than the PM value. Basically, they “fix” the MM value when it is larger than PM. Next, they shifted to the log scale to capture multiplicative effects. Finally, they used a robust statistical method to downweight outliers instead of their earlier *ad hoc* method.

\[
\text{signal} = \exp(\text{Tukey Biweight}(\log(\text{PM}_j - \text{CT}_j)))
\]
MAS 5.0 vs MAS 4.0

It was at this stage that Affy decided it wasn’t going to fight to have the best algorithm; it would let others play that game. Indeed, it could reap the benefits of better algorithms by selling more chips.

To let people test their own models, they created and posted a test dataset: The Affy Latin Square Experiment.

Using the test set, they could demonstrate that the MAS5 signal statistic is an improvement on AvDiff. It tracks nominal fold changes better, and it is less variable.

What it still doesn’t do is use information across chips.
Robust Multichip Analysis: RMA

RMA (Irizarry et al, Biostatistics 2003) tries to take the better aspects of both dChip and MAS 5.0, and to add some further twists.

Earlier in this lecture, we described the statistical model used by RMA to perform background correction.

They normalize using the “median polish” method, which we will describe in a later lecture.

They throw away the MM values entirely. They contend that there are too many cases where MM > PM, and hence including the MMs introduces more variability than the correction is worth. (They are probably correct.)
Robust Multichip Analysis: RMA

As with dChip, the RMA summarization method is built around a model:

$$\log(\text{medpol}(PM_{ij} - BG)) = \mu_i + \alpha_j + \epsilon_{ij}$$

(array i, probe j).

The parameters of this model are fit using multiple chips.

Unlike dChip, the random jitter (epsilon) is introduced on the log scale as opposed to the raw scale. This more accurately captures the fact that more intense probes are more variable.
Incorporating other information: PDNN

The above methods are all mathematical, in that they focus solely on the observed values without trying to explain those values.

Why should some probes give consistently stronger signals than others?

What governs nonspecific binding?

In general, these will depend on the exact sequence of the probe, and the thermodynamics of the binding.
Fitting the thermodynamics

Li Zhang introduced the Position-Dependent Nearest Neighbor (PDNN) model (Nat Biotech, 2003; 21:818). Unlike dChip and RMA, the parameters for the PDNN model can all be estimated from a single chip, in large part because the number of parameters is much smaller. He posits a scenario where the chance of binding is dictated by the probe sequence, and shifts the mathematical modeling back from the expression values to the probe sequences.

The model parameters are:

1. The position k of a base pair in the sequence.

2. Interactions with nearest neighbors: knowing k, we must also know what is at $k - 1$ and $k + 1$.
What is the model?

The observed signal Y_{ij} for probe i in the probe set for gene j is modeled as

$$Y_{ij} = \frac{N_j}{1 + \exp(E_{ij})} + \frac{N^*}{1 + \exp(E^*_{ij})} + B$$

In this model, there are two global terms that need to be estimated: the background, B, and the number, N^*, of RNA molecules contributing to non-specific binding (NSB).

The quantity of interest is N_j, the number of expressed mRNA molecules contributing to gene-specific binding (GSB).

The binding energies E_{ij} and E^*_{ij} are sums over contributions from each position.
What are the model parameters?

For example, consider a probe with sequence

CACCCAGCTGGTCTCTGTGGATGGGA

- We write this as an ordered list of neighboring pairs:

1. C, A \hspace{1cm} \text{energy} = w_1 \nu(b_1, b_2)
2. A, C \hspace{1cm} \text{energy} = w_2 \nu(b_2, b_3)
3. C, C \hspace{1cm} \text{energy} = w_3 \nu(b_3, b_4)
4. C, C \hspace{1cm} \text{energy} = w_4 \nu(b_4, b_5)
5. C, A \hspace{1cm} \text{energy} = w_5 \nu(b_5, b_6)
6. A, G \hspace{1cm} \text{energy} = w_6 \nu(b_6, b_7)
7. G, C \hspace{1cm} \text{energy} = w_7 \nu(b_7, b_8)
8. C, T \hspace{1cm} \text{energy} = w_8 \nu(b_8, b_9)
9. etc.
Free energy

The free energy for a perfect match is

\[E_{ij} = \sum_k w_k \nu(b_k, b_{k+1}) \]

There is a similar formula for binding in the presence of many mismatches. In total, there are 2*24 weight parameters, 2*16 neighboring base pair parameters, 2 global parameters, plus one expression parameter per probe set. Since there are many probes in each probe set, we can fit all these parameters with a single chip.
Fitted weight parameters
Using PDNN in R

The implementation of the PDNN method is contained in a separate BioConductor package. When you load the package library, it updates the list of available methods.

```r
> library(affypdnn)
> express.summary.stat.methods()

[1] "avgdiff"     "liwong"     "mas"
[4] "medianpolish" "playerout" "pdnn"
```
Using PDNN in R

One should note that the PDNN method does not follow the standard four-step procedure used by expresso. Instead of background correction, the method starts immediately with quantile normalization. The model can be fit separately on the PM and MM probes, or the MM probes can be discarded. Background is estimated along with the energy parameters and expression parameters as part of a single model.

In particular, you must use a variant of expresso called expressopdnn.
Which method is best?

Well, all of the above methods are implemented in Bioconductor.

We’re going to try a few head to head comparisons later. In this context, it’s worth thinking about how we can define a measure of “goodness”. Hmm?
Quality control assessment

A critical part of the analysis of any set of microarray experiments is ensuring that the arrays are of reasonable quality. BioConductor includes several methods to assist with the QC effort for Affymetrix projects.

The first step is typically to look at the images, which we did in the previous lecture.

We can also look at the distributions of intensities to see how well they match.

BioConductor includes tools to compute some summary statistics that tell us about the relative quality and comparability of arrays.
> boxplot(Dilution, col = 2:5)
The distribution of feature intensities

> `hist(Dilution, col = 2:5, lty = 1)`
Simple Affy

We can use the `simpleaffy` package to compute some QC summary statistics.

```r
> require(simpleaffy)
[1] TRUE

> Dil.qc <- qc(Dilution)
```

Computing the metrics will take a little time, and then we can start to look at them.
Background

The first check we make is that the background values across the arrays should be roughly comparable. In the four arrays from the dilution experiment, that seems to be the case.

\[\text{avbg(Dil.qc)} \]

\[
\begin{array}{cccc}
20A & 20B & 10A & 10B \\
94.25323 & 63.63855 & 80.09436 & 54.25830 \\
\end{array}
\]

\[\text{maxbg(Dil.qc)} \]

\[
\begin{array}{cccc}
20A & 20B & 10A & 10B \\
97.66280 & 68.18998 & 83.24646 & 57.62283 \\
\end{array}
\]

\[\text{minbg(Dil.qc)} \]

\[
\begin{array}{cccc}
20A & 20B & 10A & 10B \\
89.52555 & 60.01397 & 77.32196 & 49.22574 \\
\end{array}
\]
Global scaling factors

As mentioned above, the standard Affymetrix normalization procedure involves globally rescaling the arrays to set the median probe intensity to the same level.

Affymetrix says that the scaling factors should not differ by more than 3-fold if we want to compare arrays.

> sfs(Dil.qc)

[1] 0.8934013 1.2653627 1.1448430 1.8454067
Percent present calls

Extremely low (below about 30%) or high (above about 60%) values for the percentage of probes called present also signal potential quality problems.

> percent.present(Dil.qc)

20A.present 20B.present 10A.present 10B.present
 48.79208 49.82178 49.37822 49.75842
3’/5’ ratios

Affymetrix includes probes at the 3’ and 5’ ends of some control genes; the ratios should be less than 3.

```r
> ratios(Dil.qc)

<table>
<thead>
<tr>
<th></th>
<th>AFFX-HSAC07.3'/5'</th>
<th>AFFX-HUMGAPDH.3'/5'</th>
</tr>
</thead>
<tbody>
<tr>
<td>20A</td>
<td>0.6961423</td>
<td>0.4429746</td>
</tr>
<tr>
<td>20B</td>
<td>0.7208418</td>
<td>0.3529890</td>
</tr>
<tr>
<td>10A</td>
<td>0.8712069</td>
<td>0.4326566</td>
</tr>
<tr>
<td>10B</td>
<td>0.9313709</td>
<td>0.5726650</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>AFFX-HSAC07.3'/M</th>
<th>AFFX-HUMGAPDH.3'/M</th>
</tr>
</thead>
<tbody>
<tr>
<td>20A</td>
<td>0.1273385</td>
<td>-0.0602414</td>
</tr>
<tr>
<td>20B</td>
<td>0.1796231</td>
<td>-0.0136629</td>
</tr>
<tr>
<td>10A</td>
<td>0.2112914</td>
<td>0.4237527</td>
</tr>
<tr>
<td>10B</td>
<td>0.2725534</td>
<td>0.1125823</td>
</tr>
</tbody>
</table>
```
RNA degradation

Individual (perfect match) probes in each probe set are ordered by location relative to the 5’ end of the targeted mRNA molecule. We also know that RNA degradation typically starts at the 5’ end, so we would expect probe intensities to be lower near the 5’ end than near the 3’ end.

The affy package of BioConductor includes functions to summarize and plot the degree of RNA degradation in a series of Affymetrix experiments. These methods pretend that something like “the fifth probe in an Affymetrix probe set” is a meaningful notion, and they average these things over all probe sets on the array.

> degrade <- AffyRNAdeg(Dilution)
Visualizing RNA degradation

\[
> \text{plotAffyRNAdeg}(\text{degrade}, \text{col} = 2:5)
\]
Model-based QC

As we have seen, methods like dChip and RMA fit statistical models to the probe intensities in order to summarize gene expression values. The quantities associated with such models can also provide QC information. The BioConductor package `affyPLM` fits a probe-level model (PLM) similar to RMA.

```r
> library("affyPLM")
> pset <- fitPLM(Dilution)
```

The residuals (unexplained variation) from the model can be plotted using the `image` function. Patterns here typically indicate spatial flaws in the image that are not captured by the model. No such features were noted in the Dilution experiment, so I will not reproduce the pictures.
Relative Log Expression plots

> \texttt{Mbox(pset)}
Normalized Unscaled Standard Error

> boxplot(pset)