
Dudoit-class The Dudoit Class

Description

An implementation of the method of Dudoit and colleagues to apply te Wetfall-Young
adjustment to p-values to control the family-wise error rate when analysing microarray
data

Usage

Dudoit(data, classes, nPerm = 1000, verbose = TRUE)
S4 method for signature 'Dudoit, missing':
plot(x, ylab='T statistics', ...)
S4 method for signature 'Dudoit':
cutoffSignificant(object, alpha, ...)
S4 method for signature 'Dudoit':
selectSignificant(object, alpha, ...)
S4 method for signature 'Dudoit':
countSignificant(object, alpha, ...)

Arguments

data Either a data frame or matrix with numeric values or an exprSet as
defined in the BioConductor tools for analyzing microarray data.

classes If data is a data frame or matrix, then classes must be either a logical
vector or a factor. If data is an exprSet, then classes can be a character
string that names one of the factor columns in the associated phenoData
subobject.

nPerm An integer; the number of permutations to perform

verbose A logical flag

object A Dudoit object

alpha A real number; the target family-wise error rate

x A Dudoit object

ylab Label for the y axis

... The usual extra arguments for generic or plotting routines.

Details

In 2002, Dudoit and colleagues introduced a method to adjust the p-values when performing
gene-by-gene tests for differential expression. The adjustment was based on the method of
Westfall and Young, with the goal of controlling the family-wise error rate.

1

Value

The standard method for plot returns what you would expect.

The cutoffSignificant method returns a real number (its input value alpha). The
selectSignficant method returns a vector of logical values identifying the significant
test results, and countSignificant returns an integer counting the number of significant
test results.

Objects from the Class

As usual, objects can be created by new, but better methods are available in the form of the
Dudoit function. The basic inputs to this function are the same as those used for row-by-
row statistical tests throughout the ClassComparison package; a detailed description can
be found in the MultiTtest class.

The additional input determines the number, nPerm, of permutations to perform. The ac-
curacy of the p-value adjustment depends on this value. Since the implementation is in R
(and does not call out to something compiled like C or FORTRAN), however, the compu-
tations are slow. The default value of 1000 can take a long time with modern microarrays
that contain 40,000 spots.

Slots

adjusted.p: The numeric vector of adjusted p-values.

t.statistics: Object of class numeric containing the computed t-statistics.

p.values: Object of class numeric containing the computed p-values.

groups: Object of class character containing the names of the classes being compared.

call: Object of class call containing the function call that created the object.

Extends

Class MultiTtest, directly. In particular, objects of this class inherit methods for summary,
hist, and plot from the base class.

Methods

cutoffSignificant(object, alpha, ...) Determine cutoffs on the adjusted p-values at the
desired significance level. In other words, this function simplyt returns alpha.

selectSignificant(object, alpha, ...) Compute a logical vector for selecting significant
test results.

countSignificant(object, alpha, ...) Count the number of significant test results.

plot signature(x = Dudoit, y = missing): ...

Author(s)

Kevin R. Coombes <kcoombes@mdanderson.org>

2

References

Dudoit, S., Y.H. Yang, M.J. Callow, and T.P. Speed. 2002. Statistical Methods for Identify-
ing Differentially Expressed Genes in Replicated cDNA Microarray Experiments, Statistica
Sinica, 12(1): 111-139.

Westfall, P.H., Young, S.S. Resampling-based multiple testing: examples and methods for
p-value adjustment. Wiley series in probability and mathematics statistics. John Wiley
and Sons, 1993.

See Also

MultiTtest, Bum, SmoothTtest

Examples

ng <- 10000

ns <- 15

nd <- 200

fake.class <- factor(rep(c('A', 'B'), each=ns))

fake.data <- matrix(rnorm(ng*ns*2), nrow=ng, ncol=2*ns)

fake.data[1:nd, 1:ns] <- fake.data[1:nd, 1:ns] + 2

fake.data[(nd+1):(2*nd), 1:ns] <- fake.data[(nd+1):(2*nd), 1:ns] - 2

the permutation test is slow. it really needs more than

100 permutations, but this is just an example...

dud <- Dudoit(fake.data, fake.class, nPerm=100)

summary(dud)

plot(dud)

countSignificant(dud, 0.05)

rm(ng, ns, nd, fake.class, fake.data, dud)

Sam-class The Sam Class

Description

Implements the ”Significance Analysis of Microarrays” approach to detecting differentially
expressed genes.

Usage

Sam(data, classes, nPerm = 100, verbose = TRUE)
S4 method for signature 'Sam, missing':
plot(x, tracks=NULL, xlab='Expected T Statistics (Empirical)',
ylab='Observed t Statistics', ...)
S4 method for signature 'Sam':
summary(object, cutoff=1, ...)
S4 method for signature 'Sam':

3

selectSignificant(object, cutoff=1, ...)
S4 method for signature 'Sam':
countSignificant(object, cutoff=1, ...)

Arguments

data Either a data frame or matrix with numeric values or an exprSet as
defined in the BioConductor tools for analyzing microarray data.

classes If data is a data frame or matrix, then classes must be either a logical
vector or a factor. If data is an exprSet, then classes can be a character
string that names one of the factor columns in the associated phenoData
subobject.

nPerm An integer; the number of permutations

verbose A logical flag

x A Sam object

tracks a numeric vector

xlab Label for the x axis

ylab Label for the y axis

object A Sam object

cutoff A numeric value

... The usual extra arguments to generic functions

Details

The SAM approach to analyzing microarray data wwas developed by Tusher and colleagues;
their implementation is widely available. This is an independent implementaiton based on
trhe description in their original paper, customized to use the same interface (and thus work
with exprSet objects) used by the rest of the ClassComparison package. The fundamental
idea behind SAM is that the observed distribution of row-by-row two-sample t-tests should
be compared not to the theoretical null distribution but to a null distribution estimated by
a permutation test. The Sam constructor performs the permutation test.

Value

summary returns a SamSummary object.

selectSignificant returns a vector of logical values.

countSignificant returns an integer.

Creating Objects

As usual, objects can be created by new, but better methods are available in the form of
the Sam function. The inputs to this function are the same as those used for row-by-row
statistical tests throughout the ClassComparison package; a detailed description can be
found in the MultiTtest class.

4

Slots

t.statistics: A numeric vector containing the observed t-statistics.

observed: A numeric vector containing the sorted observed t-statistics.

expected: A numeric vector of the expected distribution of t-statistics based on a permu-
tation test.

sim.data: A matrix containing all the t-statistics from all the permutations.

call: The function call that created the object.

Methods

summary(object, cutoff=1, ...) Compute a summary of the object.

plot(x, tracks=NULL, xlab=’Expected T Statistics (Empirical)’, ylab=’Observed t Statistics’, ...)
Plot the observed and expected t-statistics. The tracks argument causes paralle lines
to be drawn on either side of the quantile-quantile central line, at the specified offsets.
Colors in the plot are controlled by the current values of COLOR.CENTRAL.LINE and
COLOR.CONFIDENCE.CURVE

selectSignificant(object, cutoff=1, ...) compute a vector that selects signficant values

countSignificant(object, cutoff=1, ...) count the number of significant values

Author(s)

Kevin R. Coombes <kcoombes@mdanderson.org>

References

Tusher, V.G., Tibshirani, R., and Chu, G. 2001. Significance analysis of microarrays applied
to the ionizing radiation response. Proc Natl Acad Sci U S A 98, 5116-5121.

See Also

MultiTtest, Bum

Examples

ng <- 10000

ns <- 50

nd <- 100

dat <- matrix(rnorm(ng*ns), ncol=ns)

dat[1:nd, 1:(ns/2)] <- dat[1:nd, 1:(ns/2)] + 2

dat[(nd+1):(2*nd), 1:(ns/2)] <- dat[(nd+1):(2*nd), 1:(ns/2)] - 2

cla <- factor(rep(c('A', 'B'), each=25))

res <- Sam(dat, cla)

plot(res)

plot(res, tracks=1:3)

summary(res)

5

summary(res, cutoff=2)

a <- summary(res)

plot(a@significant.calls)

plot(a@significant.calls[1:300])

countSignificant(res, 1)

rm(ng, ns, nd, dat, cla, res, a)

SingleGroup-class The SingleGroup Class

Description

Preliminary analysis of one group of samples for use in the SmoothTtest class. A key
feature is the standard quality control plot.

Usage

SingleGroup(avg, sd, span = 0.5, name = '')
S4 method for signature 'SingleGroup':
as.data.frame(x, row.names=NULL, optional=FALSE)
S4 method for signature 'SingleGroup':
summary(object, ...)
S4 method for signature 'SingleGroup':
print(x, ...)
S4 method for signature 'SingleGroup, missing':
plot(x, multiple=3, ccl=0, main=x@name,
xlab='Mean', ylab='Std Dev', xlim=0, ylim=0, ...)

Arguments

avg A numeric vector of mean values

sd A numeric vector of standard deviations

span The span parameter is passed onto loess.

name A character string; the name of this object

object A SingleGroup object

x A SingleGroup object

multiple A real number; the multiple of the smoothed standard deviation to call
significant.

ccl A list containing objects of the ColorCoding class. If left at its default
value of zero, colors are chosen automatically.

main Plot title

xlab Label for the x axis

6

ylab Label for the y axis

xlim Plotting limits for the x axis. If left at the default value of zero, then the
limits are automatically generated

ylim Plotting limits for the y axis. If left at the default value of zero, then the
limits are automatically generated

row.names See the base version of as.data.frame.default

optional See the base version of as.data.frame.default

...

The usual extra parameters to generic or plotting routines

Details

In 2001 and 2002, Baggerly and Coombes developed the smooth t-test for finding dif-
ferentially expressed genes in microarray data. Along with many others, they began by
log-transforming the data as a reasonable step in the direction of variance stabilization.
They observed, however, that The gene-by-gene standard deviations still seemed to vary
in a systematic way as a function of the mean log intensity. By borrowing strenght across
genes and using loess to fit the observed standard deviations as a function of the mean,
one presumably got a better estimate of the true standard deviation.

Creating Objects

Objects can be created by calls to the SingleGroup constructor. Users rarely have need to
create these objects directly; they are usually created as a consequence of the construction
of an object of the SmoothTtest class.

Slots

name: A character string; the name of this object

avg: The numeric vector of mean values

sd: The numeric vector of standard deviations

span: The span parameter used in the loess function to fit sd as a function of avg.

fit: A list containing components x and y resulting from the loess fit.

score: A numeric vector; the ratio of the pointwise standard deviations to their smooth
(loess) estimates.

Methods

as.data.frame(x, row.names=NULL, optional=FALSE) Combine the slots contain-
ing numeric vectors into a data frame, suitable for printing or exporting.

summary(object, ...) Write out a summary of the object.

print(x, ...) Print the entire object. You never want to do this.

plot(x, multiple=3, ccl=0, main=x@name, xlab=’Mean’, ylab=’Std Dev’, xlim=0, ylim=0, ...)
Produce a scatter plot of the standard deviations (x@sd) as a function of the means
(x@avg). The appropriate mutliple of the loess fit is overlaid, and points that exceed

7

this multiple are flaged in a different color. Colors in the plotare controlled by the
current values of COLOR.CENTRAL.LINE, COLOR.CONFIDENCE.CURVE, COLOR.BORING,
COLOR.BAD.REPLICATE, and COLOR.WORST.REPLICATE.

Author(s)

Kevin R. Coombes <kcoombes@mdanderson.org>

References

Baggerly, K.A., Coombes, K.R., Hess, K.R., Stivers, D.N., Abruzzo, L.V., Zhang, W.
Identifying differentially expressed genes in cDNA microarray experiments. J Comp Biol.
8:639-659, 2001.

Coombes, K.R., Highsmith, W.E., Krogmann, T.A., Baggerly, K.A., Stivers, D.N., Abruzzo,
L.V. Identifying and quantifying sources of variation in microarray data using high-density
cDNA membrane arrays. J Comp Biol. 9:655-669, 2002.

See Also

SmoothTtest

Examples

m <- rnorm(1000, 8, 2.5)

v <- rnorm(1000, 0.7)

plot(m, v)

x <- SingleGroup(m, v, name='bogus')

summary(x)

plot(x)

plot(x, multiple=2)

cleanup

rm(m, v, x)

TwoGroupStats-class The TwoGroupStats Class

Description

Compute row-by-row means and variances for a data matrix whose columns belong to wto
different groups of interest.

8

Usage

TwoGroupStats(data, classes, name = comparison, name1 = A, name2 = B)
S4 method for signature 'TwoGroupStats':
as.data.frame(x, row.names=NULL, optional=FALSE)
S4 method for signature 'TwoGroupStats':
summary(object, ...)
S4 method for signature 'TwoGroupStats':
print(x, ...)
S4 method for signature 'TwoGroupStats, missing':
plot(x, main=x@name, useLog=FALSE, ...)

Arguments

data Either a data frame or matrix with numeric values or an exprSet as
defined in the BioConductor tools for analyzing microarray data.

classes If data is a data frame or matrix, then classes must be either a logical
vector or a factor. If data is an exprSet, then classes can be a character
string that names one of the factor columns in the associated phenoData
subobject.

name A character string; the name of this object
name1 A character string; the name of the first group
name2 A character string; the name of the second group
x A TwoGroupStats object
row.names See the base version of as.data.frame.default
optional See the base version of as.data.frame.default
object A TwoGroupStats object
main Plot title
useLog a logical flag; should the values be log-transformed before plotting?
... The usual extra arguments to generic functions

Details

This class was one of the earliest developments in our suite of tools to analyze microarrays.
Its main purpose is to segregate out the preliminary computation of summary statistics on
a row-by-row basis, along with a set of plots that could be generated automatically and
used for quality control.

Creating Objects

As usual, objects can be created by new, but better methods are available in the form of
the TwoGroupStats function. The inputs to this function are the same as those used for
row-by-row statistical tests throughout the ClassComparison package; a detailed description
can be found in the MultiTtest class.

One should note that this class serves as the front end to the SmoothTtest class, providing
it with an interface that accepts exprSet objects compatible with the other statistical tests
in the ClassComparison package.

9

Slots

mean1: The numeric vector of means in the first group

mean2: The numeric vector of means in the second group

overallMean: The numeric vector of overall row means

var1: The numeric vector of variances in the first group

var2: The numeric vector of variances in teh second group

overallVar: The numeric vector of variances assuming the two groups have the same mean

pooledVar: The numeric vector of row-by-row pooled variances, assuming the two groups
have the same variance but different means

n1: The number of items in the first group

n2: The number of items in the first group

name1: The name of the first group

name2: The name of the second group

name: The name of the object

Methods

as.data.frame(x, row.names=NULL, optional=FALSE) Collect the numeric vectors
from the object into a single dat fame, suitable for printing or exporting.

summary(object, ...) Write out a summary of the object.

print(x, ...) Print the object. (Actually, it only prints a summary, since the whole object
is almost always more than you really want to see. If you insist on printing everything,
use as.data.frame.)

plot(x, main=x@name, useLog=FALSE, ...) This function actually produces six dif-
ferent plots of the data, so it is usually wrapped by a graphical layout command like
par(mfrow=c(2,3)). The first two plots show the relation between the mean and
standard deviation for the two groups separately; the third plot does the same for
the overall mean and variance. The fourth plot is a Bland-Altman of the differnce
between the means against the overall mean. (In the microarray world, this is usually
called an M-vs-A plot.) A loess fit is overlaid on the scatter plot, and points outside
confidence bounds based on the fit are printed in a differnt color to flag them as highly
variable. The fifth plot shows a loess fit (with confidence bounds) of the difference as a
function of the row index (which often is related to the geometric position of spots on
a microarray). Thus, this plot gives a possible indication of regions of an array where
unusual things happen. The final plot compares the overall variances to the pooled
variances.

Author(s)

Kevin R. Coombes <kcoombes@mdanderson.org>

References

Altman DG, Bland JM. Measurement in Medicine: the Analysis of Method Comparison
Studies. The Statistician, 1983; 32: 307-317.

10

See Also

SmoothTtest, MultiTtest

Examples

bogus <- matrix(rnorm(30*1000, 8, 3), ncol=30, nrow=1000)

splitter <- rep(FALSE, 30)

splitter[16:30] <- TRUE

x <- TwoGroupStats(bogus, splitter)

summary(x)

opar<-par(mfrow=c(2,3), pch='.')

plot(x)

par(opar)

cleanup

rm(bogus, splitter, x, opar)

Bum-class The Bum Class

Description

The Bum class is used to fit a beta-uniform mixture model to a set of p-values.

Usage

Bum(pvals, ...)
S4 method for signature 'Bum':
summary(object, tau=0.01, ...)
S4 method for signature 'Bum':
hist(x, res=100, xlab='P Values', main='', ...)
S4 method for signature 'Bum':
image(x, ...)
S4 method for signature 'Bum':
cutoffSignificant(object, alpha, by='FDR', ...)
S4 method for signature 'Bum':
selectSignificant(object, alpha, by='FDR', ...)
S4 method for signature 'Bum':
countSignificant(object, alpha, by='FDR', ...)
likelihoodBum(object)

Arguments

pvals A numeric vector containing values between 0 and 1

object A Bum object

tau A real number between 0 and 1, representing a cutoff on the p-values.

11

x A Bum object

res A positive integer; the resolution at which to plot the fitted distribution
curve.

xlab Label for the x axis

main Graph title

alpha Either the false discovery rate (if by = ’FDR’) or the posterior probability
(if by = ’EmpiricalBayes’)

by String denoting the method to use for determining cutoffs. The chioces
are ’FDR’, ’FalseDiscovery’, or ’EmpiricalBayes’. Since the test is imple-
mented with match.arg, unique abbreviations also work.

... All methods are defined to accept additional arguments in order to allow
flexibility in designing derived classes. The usual graphical parameters
can be supplied to hist and image.

Details

The BUM method was introduced by Stan Pounds and Steve Morris, although it was
simultaneously discovered by several other researchers. It is generally applicable to any
analysis of microarray or proteomics data that performs a separate statistical hypothesis
test for each gene or protein, where each test produces a p-value that would be valid if the
analyst were only performing one statistical test. When performing thousands of statistical
tests, however, those p-values no longer have the same interpretation as Type I error rates.
The idea behind BUM is that, under the null hypothesis that none of the genes or proteins
is interesting, the expected distribution of the set of p-values is uniform. By contrast, if
some of the genes are interesting, then we should see an overabundance of small p-values
(or a spike in the histogram near zero). We can model the alternative hypothesis with a
beta distribution, and view the set of all p-values as a mixture distribution.

Fitting the BUM model is straightforward, using a nonlinear optimizer to compute the
maximum likelihood parameters. After the model has been fit, one can easily determine
cutoffs on the p-values that correspond to desired false discovery rates. Alternatively, the
original Pounds and Morris paper shows that their results can be reinterpreted to recover the
empirical Bayes method introduced by Efron and Tibshirani. Thus, one can also determine
cutoffs by specifying a desired posterior probability of signficance.

Value

Graphical functions (hist and image) invisbly return the object on which they were invoked.

The cutoffSignficant method returns a real number between zero and one. P-values
below this cutoff are considered statistically significant at either the specified false discovery
rate or at the specified posterior probability.

The selectSignficant method returns a vector of logical values whose length is equal to
the length of the vector of p-values that was used to construct the Bum object. True values
in the return vector mark the statistically signficant p-values.

The countSignificant method returns an integer, the number of statistically significant
p-values.

The summary method returns an object of class BumSummary.

12

Creating Objects

Although objects can be created directly using new, the most common usage will be to pass
a vector of p-values to the Bum function.

Slots

pvals: The vector of p-values used to construct the object.

ahat: Model parameter

lhat: Model parameter

pihat: Model parameter

Methods

summary(object, tau=0.01, ...) For each value of the p-value cutoff tau, computes
estimates of the fraction of true positives (TP), false negatives (FN), false positives
(FP), and true negatives (TN).

hist(x, res=100, xlab=’P Values’, main=”, ...) Plots a histogram of the object, and
overlays (1) a straight line to indicate the contribution of the uniform component and
(2) the fitted beta-uniform distribution from the observed values. Colors in the plot
are controlled by COLOR.EXPECTED and COLOR.OBSERVED.

image(x, ...) Produces four plots in a 2x2 layout: (1) the histogram produced by hist;
(2) a plot of cutoffs against the desired false discovery rate; (3) a plot of cutoffs against
the posterior probability of coming from the beat component; and (4) an ROC curve.

cutoffSignificant(object, alpha, by=’FDR’, ...) Computes the cutoff needed for sig-
nificance, which in this case means aridsing from the beta component rarther than
the uniform component of the mixture. Significance is specified either by the false
discovery rate (when by = ’FDR’ or by = ’FalseDiscovery’) or by the posterior
probability (when by = ’EmpiricalBayes’)

selectSignificant(object, alpha, by=’FDR’, ...) Uses cutoffSignificant to determine
a logical vector that indicates which of the p-values are significant.

countSignificant(object, alpha, by=’FDR’, ...) Uses selectSignificant to count the
number of significant p-values.

Author(s)

Kevin R. Coombes <kcoombes@mdanderson.org>

References

Pounds S, Morris SW. Estimating the occurrence of false positives and false negatives in
microarray studies by approximating and partitioning the empirical distribution of p-values.
Bioinformatics. 2003 Jul 1;19(10):1236-42.

Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful
approach to multiple testing. J Roy Statist Soc B, 1995; 57: 289-300.

Efron B, Tibshirani R: Empirical bayes methods and false discovery rates for microarrays.
Genet Epidemiol 2002, 23: 70-86.

13

See Also

Two classes that produce lists of p-values that can (and often should) be analyzed using
BUM are MultiTtest and MultiLinearModel. Also see BumSummary.

Examples

fake.data <- c(runif(700), rbeta(300, 0.3, 1))

a <- Bum(fake.data)

hist(a, res=200)

alpha <- (1:25)/100

plot(alpha, cutoffSignificant(a, alpha, by='FDR'),

xlab='Desired False Discovery Rate', type='l',

main='FDR Control', ylab='Significant P Value')

GAMMA <- 5*(10:19)/100

plot(GAMMA, cutoffSignificant(a, GAMMA, by='EmpiricalBayes'),

ylab='Significant P Value', type='l',

main='Empirical Bayes', xlab='Posterior Probability')

b <- summary(a, (0:100)/100)

be <- b@estimates

sens <- be$TP/(be$TP+be$FN)

spec <- be$TN/(be$TN+be$FP)

plot(1-spec, sens, type='l', xlim=c(0,1), ylim=c(0,1), main='ROC Curve')

points(1-spec, sens)

abline(0,1)

image(a)

countSignificant(a, 0.05, by='FDR')

countSignificant(a, 0.99, by='Emp')

#cleanup

rm(a, b, be, alpha, GAMMA, sens, spec, fake.data)

BumSummary-class The BumSummary class

Description

An implementation class. Users are not expected to create these objects directly; they are
produced as return objects from the summary method for Bum.

Slots

bum: Object of class Bum

estimates: Object of class data.frame

Fhat: Object of class numeric

14

Methods

show signature(object = "BumSummary"): Print the object, which contains a summary
of the underlying Bum object. The summary contains a data frame with estimates
of the fraction of true positives (TP), false postives (FP), true negatives (TN) and
false negatives (FN) at the set of p-value cutoffs specified in the call to the summary
method.

Author(s)

Kevin R. Coombes <kcoombes@mdanderson.org>

See Also

Bum

Examples

See the examples for the Bum class.

dwil Wilcoxon Density Function

Description

Computes the density function for the Wilcoxon rank-sum distribution without centering.

Usage

dwil(q, m, n)

Arguments

q vector of quantiles

m number of observations in the first sample

n number of observations in the second sample

Details

Computes the density function for the Wilcoxon rank-sum distribution, using exact values
when both groups have fewer than 50 items and switching to a normal approximation
otherwise. It was originally written for S-Plus, which still perversely insists that m and n
must be less than 50. The function was retained when the OOMPA library was ported
to R, since S-Plus keeps the actual rank-sum but R centers the distribution at zero. This
function encapsulated the difference, allowing everything else to continue to work as it had
worked previously.

15

Value

A vector of the same length as q containing (approximate or exact) values of the density
function.

Author(s)

Kevin R. Coombes <kcoombes@mdanderson.org>

See Also

MultiWilcoxonTest

Examples

dwil(51:60, 9, 3)

dwil(51:60, 9, 51)

matrixT Multiple T Tests by Matrix Multiplication

Description

Utility functions for computing vectors of row-by-row means, variances, and t-statistics.

Usage

matrixMean(x)
matrixVar(x, xmean)
matrixT(m, v)

Arguments

x a matrix

xmean a numeric vector or single-column matrix

m a matrix

v a logical vector of length eual to the number of columns of m

Value

matrixMean returns a single-column matrix containing the row-by-row means of x.

matrixVar returns a signle-column matrix containing the row-by-row means of x, assuming
that xmean contains the corresponding mean values.

matrixT returns a single-column matrix of t-statistics from a two-sample t-test comparing
the columns for which v is true to those for which v is false.

16

Author(s)

Kevin R. Coombes <kcoombes@mdanderson.org>

See Also

MultiTtest

Examples

ng <- 1000

ns <- 50

dat <- matrix(rnorm(ng*ns), ncol=ns)

clas <- factor(rep(c('Good', 'Bad'), each=25))

myMean <- matrixMean(dat)

myVar <- matrixVar(dat, myMean)

plot(myMean, myVar)

myT <- matrixT(dat, clas)

hist(myT)

rm(ng, ns, dat, myMean, myVar, myT)

MultiLinearModel-class

The MultiLinearModel Class

Description

Class to fit multiple (row-by-row) linear (fixed-effects) models on microarray or proteomics
data.

Usage

MultiLinearModel(form, clindata, arraydata)
S4 method for signature 'MultiLinearModel':
summary(object, ...)
S4 method for signature 'MultiLinearModel':
hist(x, xlab='F Statistics', main=NULL, ...)
S4 method for signature 'MultiLinearModel, missing':
plot(x, ylab='F Statistics', ...)
S4 method for signature 'MultiLinearModel, ANY':
plot(x, y, xlab='F Statistics',
ylab=deparse(substitute(y)), ...)
S4 method for signature 'MultiLinearModel':
anova(object, ob2, ...)
multiTukey(object, alpha)

17

Arguments

form A formula object specifying the linear model
clindata Either a data frame of ”clinical” or other covariates or an exprSet.
arraydata A matrix or data frame of values to be explained by the model. If

clindata is an exprSet, then arraydata can be omitted, since it is as-
sumed to be part of the exprSet.

object A MultiLinearModel object
ob2 Another MultiLinearModel object
x A MultiLinearModel object
y A numeric vector
xlab Label for the x-axis
ylab Label for the y-axis
main Graph title
... Optional graphical or other parameters to generic functions
alpha A real number between 0 and 1; the significance level for the Tukey test.

Value

The anova method returns a data frame. The rows in the data frame correpsonds to the
rows in the arraydata object that was used to construct the MultiLinearModel objects.
The first column contains the F-statistics and the second column contains the p-values.
The multiTukey function returns a vector whosem length equals the number of rows in the
arraydata object used to construct the MultiLinearModel. Assuming that the overall F-
test was significant, differences in group means (in each data row) larger than this value are
significant by Tukey’s test for honoestly significant difference. (Of course, that statement
is incorrect, since we haven’t fully corrected for multiple testing. Our standard practice is
to take the p-values from the row-by-row F-tests and evaluate themusing the beta-uniform
mixture model (see Bum). For the rows that correspond to models whose p-values are smaller
than the Bum cutoff, we simply use the Tukey HSD values without further modification.)

Creating Objects

Objects should be created by calling the MultiLinearModel function. The first argument
is a formula specifying the linear model, in the same manner that it would be passed to
lm. We will fit the linear model separately for each row in the arraydata matrix. Rows of
arraydata are attached to the clindata data frame and are always referred to as ”Y” in
the formulas. In particular, this implies that clindata can not include a column already
called ”Y”. Further, the implementation only works if ”Y” is the response variable in the
model.

Multiple linear models with ”exprSet” objects

The BioConductor packages uses an exprSet to combine microarray data and clinical co-
variates (known in their context as phenoData objects) into a single structure. You can call
MultiLinearModel using an exprSet object for the clindata argument. In this case, the
function extracts the phenoData slot of the exprSet to use for the clinical covariates, and
extracts the exprs slot of the exprSet object to use for the array data.

18

Slots

call: A call object describing how the object was constructed.

model: The formula object specifying the linear model.

F.statistics: A numeric vector of F-statistics comparing the linear model to the null
model.

p.values: A numeric vector containing the p-values associated to the F-statistics.

coefficients: A matrix of the coefficients in the linear models.

predictions: A matrix of the (Y-hat) values predicted by the models.

sse: A numeric vector of the sum of squared error terms from fitting the models.

ssr: A numeric vector of the sum of squared regression terms from the model.

df: A numeric vector (of length two) containing the degrees of freedom for the F-tests.

Methods

summary(object, ...) Write out a summary of the object.

hist(x, xlab=’F Statistics’, main=NULL, ...) Create a histogram of the F-statistics.

plot(x, ylab=’F Statistics’, ...) Plot the F-statistics as a function of the row index.

plot(x, y, xlab=’F Statistics’, ylab=deparse(substitute(y)), ...) Plot the F-statistics
against the numeric vector y.

anova(object, ob2, ...) Perform row-by-row F-tests comparing two different linear mod-
els.

Details

The MultiLinearModel constructor computes row-by-row F-tests comparing each linear
model to the null model Y 1. In many instances, one wishes to use an F-test to compare
two different linear models. For instance, many standard applications of analysis of variance
(ANOVA) can be described using sucha compoarison between two different linear models.
The anova method for the MultiLinearModel class performs row-by-row F-tests comparing
two competing linear models.

The implementation of MultiLinearModel does not take the naive approach of using either
apply or a for-loop to attach rows one at a time and fit separate linear models. All the
models are actually fit simultaneously by a series of matrix operations, which greatly reduces
the amount of time needed to compute the models. The constraint on the column names
in clindata still holds, since one row is attached to allow model.matrix to determine the
contrasts matrix.

Author(s)

Kevin R. Coombes <kcoombes@mdanderson.org>

See Also

MultiTtest, MultiWilcoxonTest, Bum, lm, anova.

19

Examples

ng <- 10000

ns <- 50

dat <- matrix(rnorm(ng*ns), ncol=ns)

cla <- factor(rep(c('A', 'B'), 25))

cla2 <- factor(rep(c('X', 'Y', 'Z'), times=c(15, 20, 15)))

covars <- data.frame(Grade=cla, Stage=cla2)

res <- MultiLinearModel(Y ~ Grade + Stage, covars, dat)

summary(res)

hist(res, breaks=101)

plot(res)

plot(res, res@p.values)

graded <- MultiLinearModel(Y ~ Grade, covars, dat)

summary(graded)

hist(graded@p.values, breaks=101)

hist(res@p.values, breaks=101)

oop <- anova(res, graded)

hist(oop$p.values, breaks=101)

cleanup

rm(ng, ns, dat, cla, cla2, covars, res, graded, oop)

MultiTtest-class The MultiTtest Class

Description

Class to perform row-by-row t-tests on microarray or proteomics data.

Usage

MultiTtest(data, classes)
S4 method for signature 'MultiTtest':
summary(object, ...)
S4 method for signature 'MultiTtest':
hist(x, xlab='T Statistics', main=NULL, ...)
S4 method for signature 'MultiTtest, missing':
plot(x, ylab='T statistics', ...)
S4 method for signature 'MultiTtest, ANY':
plot(x, y, xlab='T Statistics, ylab=deparse(substitute(y)), ...)

Arguments

data Either a data frame or matrix with numeric values or an exprSet as
defined in the BioConductor tools for analyzing microarray data.

20

classes If data is a data frame or matrix, then classes must be either a logical
vector or a factor. If data is an exprSet, then classes can be a character
string that names one of the factor columns in the associated phenoData
subobject.

object A MultiTtest object

x A MultiTtest object

y A numeric vector

xlab Label for the x axis

ylab Label for the y axis

main Plot title

... The usual graphical parameters can by supplied to hist and plot meth-
ods.

Value

The graphical routines invisibly return the object against which they were invoked.

Creating objects

Although objects can be created using new, the better method is to use the MultiTtest
function. In the simplest case, you simply pass in a data matrix and a logical vector
assigning classes to the columns, and the constructor performs row-by-row two-sample t-
tests and computes the associated (single test) p-values. To adjust for multiple testing, you
can pass the p-values on to the Bum class.

If you use a factor instead of a logical vector, then the t-test compares the first level of trhe
factor to everything else. To handle the case of multiple classes, see the MultiLinearModel
class.

As with other class comparison functions that are part of the OOMPA, we can also perform
statistical tests on exprSet objects from the BioConductor libraries. In this case, we pass
in an exprSet object along with the name of a factor to use for splitting the data.

Slots

t.statistics: Object of class numeric containing the computed t-statistics.

p.values: Object of class numeric containing the computed p-values.

groups: Object of class character containing the names of the classes being compared.

call: Object of class call containing the function call that created the object.

Methods

summary(object, ...) Write out a summary of the object.

hist(x, xlab=’T Statistics’, main=NULL, ...) Produce a histogram of the t-statistics.

plot(x Produces a scatter plot of the t-statistics against their index.

plot(x,y) Produces a scatter plot of the t-statistics in the object x against the numeric
vector y.

21

Author(s)

Kevin R. Coombes <kcoombes@mdanderson.org>

See Also

matrixT, Bum, MultiLinearModel, Dudoit

Examples

ng <- 10000

ns <- 50

dat <- matrix(rnorm(ng*ns), ncol=ns)

cla <- factor(rep(c('A', 'B'), each=25))

res <- MultiTtest(dat, cla)

summary(res)

hist(res, breaks=101)

plot(res)

plot(res, res@p.values)

hist(res@p.values, breaks=101)

rm(ng, ns, dat, cla, res)

MultiWilcoxonTest-class

The MultiWilcoxonTest Class

Description

The MultiWilcoxonTest class is used to perform row-by-row Wilcoxon rank-sum tests on
a data matrix. Significance cutoffs are determined by the empirical Bayes method of Efron
and Tibshirani

Usage

MultiWilcoxonTest(data, classes, histsize = NULL)
S4 method for signature 'MultiWilcoxonTest':
summary(object, prior=1, significance=0.9, ...)
S4 method for signature 'MultiWilcoxonTest':
hist(x, xlab='Rank Sum',
ylab='Prob(Different | Y)', main='', ...)
S4 method for signature 'MultiWilcoxonTest, missing':
plot(x, prior=1, significance=0.9,
ylim=c(-0.5, 1), xlab='Rank Sum', ylab='Prob(Different | Y)', ...)
S4 method for signature 'MultiWilcoxonTest':
cutoffSignificant(object, prior, significance, ...)
S4 method for signature 'MultiWilcoxonTest':
selectSignificant(object, prior, significance, ...)
S4 method for signature 'MultiWilcoxonTest':
countSignificant(object, prior, significance, ...)

22

Arguments

data Either a data frame or matrix with numeric values or an exprSet as
defined in the BioConductor tools for analyzing microarray data.

classes If data is a data frame or matrix, then classes must be either a logical
vector or a factor. If data is an exprSet, then classes can be a character
string that names one of the factor columns in the associated phenoData
subobject.

histsize An integer; the number of bins used for the hostogram summarizing the
Wilcoxon statistics. When NULL, each discrete rank-sum value gets its
own bin.

object an object of the MultiWilcoxonTest class.

x an object of the MultiWilcoxonTest class.

xlab Label for the x axis

ylab Label for the y axis

ylim Plotting limits on the y=axis

main Graph title

prior Prior probability that an arbitrary gene is not differentially expressed,
or that an arbitrary row does not yield a significant Wilcoxon rank-sum
statistic.

significance Desired level of posterior probability

... Additional graphical parameters.

Details

See the paper by Efron and Tibshirani.

Value

The standard methods summary, hist, and plot return what you would expect.

The cutoffSignificant method returns a list of two integers. Rank-sum values msaller
than the first value or larger than the second value are statistically significant in the sense
that their posterior probability exceeds the specified significance level given the assump-
tions about the prior probability of not being significant.

The selectSignficant method returns a vector of logical values identifying the significant
test results, and countSignificant returns an integer counting the number of significant
test results.

Creating Objects

As usual, objects can be created by new, but better methods are available in the form
of the MultiWilcoxonTest function. The inputs to this function are the same as those
used for row-by-row statistical tests throughout the ClassComparison package; a detailed
description can be found in the MultiTtest class.

23

The constructor computes row-by-row Wilcoxon rank-sum statistics on the input data,
comparing the two groups defined by the classes argument. It also estimates the observed
and theoretical (expected) density functions for the collection of rank-sum statistics.

The additional input argument, histsize is usually best left to its default value. In certain
pathological cases, we have found it necessary to use fewer bins; one suspects that the
underlying model does not adequately capture the complexity of those situations.

Slots

rank.sum.statistics: A numeric vector containing the computed rank-sum statistics.

xvals: A numeric vector, best thought of as the vector of possible rank-sum statistics given
the sizes of the two groups.

theoretical.pdf: A numeric vector containing the theoretical density function evaluated
at the points of xvals.

pdf: A numeric vector containing the empirical density function computed at the points of
xvals.

unravel: A numeric vector containing a smoothed estimate (by Poisson regression using
B-splines) of the empirical density function evaluated at xvals.

groups: A vector containing the names of the groups defined by classes.

call: An object of class call representing the function call that created the object.

Methods

summary(object, prior=1, significance=0.9, ...) Write out a summary of the object.
For a given value of the prior probability of not being differentially expressed and a
given significance cutoff on the posterior probability, reports the cutoffs and number
of items in both tails of the distribution.

hist(x, xlab=’Rank Sum’, ylab=’Prob(Different|Y)’, main=”, ...) Plot a histogram
of the rank-sum statistics, with overlaid curves represnting the expected and ob-
served distributions. Colors of the curves are controlled by COLOR.EXPECTED and
COLOR.OBSERVED.

plot(x, prior=1, significance=0.9, ylim=c(-0.5, 1), xlab=’Rank Sum’, ylab=’Prob(Different | Y)’, ...)
Plots the posterior probability of being differentially expressed for given values of the
prior. Horixontal lines are added at each specified significance level for the poste-
rior probability.

cutoffSignificant(object, prior, significance, ...) Determine cutoffs on the rank-sum
statistic at the desired significance level.

selectSignificant(object, prior, significance, ...) Compute a logical vector for select-
ing significant test results.

countSignificant(object, prior, significance, ...) Count the number of significant test
results.

Author(s)

Kevin R. Coombes <kcoombes@mdanderson.org>

24

References

Efron B, Tibshirani R: Empirical bayes methods and false discovery rates for microarrays.
Genet Epidemiol 2002, 23: 70-86.

Pounds S, Morris SW. Estimating the occurrence of false positives and false negatives in
microarray studies by approximating and partitioning the empirical distribution of p-values.
Bioinformatics. 2003 Jul 1;19(10):1236-42.

See Also

Implementation is handled in part by the functions dwil and rankSum. The empirical Bayes
results for alternative tests (such as MultiTtest) can be obtained using the beta-uniform
mixture model in the Bum class.

Examples

ng <- 10000

ns <- 15

nd <- 200

fake.class <- factor(rep(c('A', 'B'), each=ns))

fake.data <- matrix(rnorm(ng*ns*2), nrow=ng, ncol=2*ns)

fake.data[1:nd, 1:ns] <- fake.data[1:nd, 1:ns] + 2

fake.data[(nd+1):(2*nd), 1:ns] <- fake.data[(nd+1):(2*nd), 1:ns] - 2

a <- MultiWilcoxonTest(fake.data, fake.class)

hist(a)

plot(a)

plot(a, prior=0.85)

abline(h=0)

cutoffSignificant(a, prior=0.85, signif=0.95)

countSignificant(a, prior=0.85, signif=0.95)

cleanup

rm(ng, ns, nd, fake.class, fake.data, a)

rankSum Wilcoxon Rank-Sum Statistic

Description

Compute the Wilcoxon rank-sum statistic

Usage

rankSum(data, selector)

Arguments

data A numeric vector
selector A logical vector the same length as data.

25

Details

This is an efficient function to compute the value of the Wilcoxon rank-sum statistic with-
out the extra overhead of the full wilcox.test function. It is used internally by the
MultiWilcoxonTest class to perform rwo-by-row Wilcoxon tests.

Value

Returns an integer, the rank-sum of the subset of the data for which the selector is true.

Author(s)

Kevin R. Coombes <kcoombes@mdanderson.org>

See Also

dwil, MultiWilcoxonTest

Examples

dd <- rnorm(100)

cc <- rep(c(TRUE, FALSE), each=50)

rankSum(dd, cc)

rm(cc, dd)

SamSummary-class The SamSummary Class

Description

An implementation class. Users are not expected to create these objects directly; they are
produced as return objects from the summary method for Sam.

Slots

fdr: A number between 0 and 1; the expected false discovery rate

hi: Upper threshold for significance

lo: Lower threshold for significance

cutoff: A numeric value specified in the call to the Sam summary method.

significant.calls: vector of logical values

average.false.count: The average number o false positives in the permuted data at this cutoff
level.

Methods

show signature(object = SamSummary): Print the object, which contains a summary of
the underlying Sam object. In particular, the summary reports the number of genes
acheiving each possible number of misclassifications.

26

Author(s)

Kevin R. Coombes <kcoombes@mdanderson.org>

See Also

Sam

Examples

See the examples for the Sam class.

significant Generic Functions for Significance

Description

In the world of multiple testing that is inhabited by most microarray or protein profiling
experiments, analysts frequently perform separate statistical tests for each gene or protein
in the experiment. Determining cutoffs that achieve statistical significance (in a meaningful
way) is an inherent part of the procedure. It is then common to select the significant items
for further processing or for preparing reports, or at least to count the number of significant
items. These generic functions provide a standard set of tools for selecing and counting
the significant items, which can be used with various statistical tests and various ways to
account for multiple testing.

Usage

cutoffSignificant(object, ...)
selectSignificant(object, ...)
countSignificant(object, ...)

Arguments

object Typically, an object that performs multiple statistical tests on microarray
or proteomics data.

... All generic methods are designed to take optional additonal argument for
flexibility in creating derived classes.

Value

cutoffSignificant returns appropraite cutoff values that achieve specified signficance cri-
teria.

selectSignificant returns a logical vector, with true values indicating items that satisfy
the cutoff making them statistically significant.

countSignificant returns an integer, representing the numgbe of significant items.

27

Author(s)

Kevin R. Coombes <kcoombes@mdanderson.org>

See Also

Classes that implement these methods include Bum, Sam, Dudoit, MultiWilcoxonTest, and
TNoM.

Examples

Since these are generic methods, there are no examples. See the

classes that implement specific instances.

SmoothTtest-class The SmoothTtest Class

Description

Implements the smooth t-test for differential expression as developed by Baggely and
Coombes.

Usage

SmoothTtest(stats, aname = Group One, bname = Group Two,
name = paste(aname, vs., bname))
S4 method for signature 'SmoothTtest':
as.data.frame(x, row.names=NULL, optional=FALSE)
S4 method for signature 'SmoothTtest':
summary(object, ...)
S4 method for signature 'SmoothTtest, missing':
plot(x, folddiff=3, goodflag=2, badch=4, ccl=0,
name=x@name, pch='.', xlab='log intensity', ylab='log ratio', ...)

Arguments

stats An object of the TwoGroupStats class.

aname A character string; the name of the second group

bname A character string; the name of the second group

name A character string; the name of this object

object A SmoothTtest object

x A SmoothTtest object

row.names See the base version of as.data.frame.default

optional See the base version of as.data.frame.default

folddiff A real number; the level of fold difference considered large enough to be
indicated in the plots.

28

goodflag A real number; the level (in standard deviation units) of the smooth t-
statistic considered large enough to be indicated in the plot.

badch A real number; the level of variability in single groups considered large
enough to be worrisome. See the multiple argument to the plot method
in the SingleGroup class.

ccl A list containing objects of the ColorCoding class. If left at its default
value of zero, colors are chosen automatically.

pch Default plotting character

xlab Label for the x axis

ylab Label for the y axis

...

The usual extra parameters to generic or plotting routines

Details

In 2001 and 2002, Baggerly and Coombes developed the smooth t-test for finding dif-
ferentially expressed genes in microarray data. Along with many others, they began by
log-transforming the data as a reasonable step in the direction of variance stabilization.
They observed, however, that The gene-by-gene standard deviations still seemed to vary
in a systematic way as a function of the mean log intensity. By borrowing strenght across
genes and using loess to fit the observed standard deviations as a function of the mean,
one presumably got a better estimate of the true standard deviation.

These smooth estimates are computed for each of two groups of samples being compared.
They are then combined (gene-by-gene using the usual univariate formulas) to compute
pooled ”smooth” estimates of the standard deviation. These smooth estimates are then
used in gene-by-gene t-tests.

The interesting question then arises of how to compute and interpret p-values associated
to these individual tests. The liberal argument asserts that, because smoothing uses data
from hundreds of measurements to estiamte the standard deviation, it can effectively be
treated as ”known” in the t-tests, which should thus be compared against the normal dis-
tribution. A conservative argument claims that the null distribution should still be the
t-distribution with the degrees of freedom determined in the usual way by the number of
samples. The truth probably lies somewhere in between, and is probably best approximated
by some kind of permutation test. In this implementation, we take the coward’s way out
and don’t provide any of those alternatives. You have to extract the t-statistics (from the
smooth.t.statistics slot of the object) and compute your own p-values in your favorite
way. If you base the computations on a theoretical model rather than a permutation test,
then the Bum class provides a convenient way to account for multiple testing.

Creating Objects

In practice, users will first use a data frame and a classification vector (or an exprSet) to
construct an object of the TwoGroupStats object. Thisn object can then be handed directly
to the SmoothTtest function to perform the smooth t-test.

29

Slots

one: An object of the SingleGroup class representing a loess smooth of standard deviation
as a function of the mean in the first group of samples.

two: An object of the SingleGroup class representing a loess smooth of standard deviation
as a function of the mean in the second group of samples.

smooth.t.statistics: A numeric vector containing the smooth t-statistics

fit: A data.frame containing two columns, x and y, containing the smooth estimates of
the pooled standard deviation

dif: A numeric vector of the differences in mean values between the two groups

avg: A numeric vector of the overall mean value

aname: A character string; the name of the first group

bname: A character string; the name of the second group

name: A character string; the name of this object

stats: The TwoGroupStats object that was used to create this object.

Methods

as.data.frame(x, row.names=NULL, optional=FALSE) Convert the object into a
data frame suitable for printing or exporting.

summary(object, ...) Write out a summary of the object.

plot(x, folddiff=3, goodflag=2, badch=4, ccl=0, name=x@name, pch=’.’, xlab=’log intensity’, ylab=’log ratio’, ...)
Create a set of six plots. The first two plots are the QC plots from the SingleGroup
objects representing the two groups of samples. The third plot is a scatter plot compar-
ing the means in the two groups. The fourth plot is Bland-Altman plot of the overall
mean against the difference in means (also known colloquially as an M-vs-A plot). The
fifth plot is a histogram of the smooth t-statistics. The final plot is a scatter plot of the
smooth t-statistics as a function of the mean intensity. Colors in the plots are controlled
by the curent values of COLOR.BORING, COLOR.SIGNIFICANT, COLOR.BAD.REPLICATE,
COLOR.WORST.REPLICATE, COLOR.FOLD.DIFFERENCE, COLOR.CENTRAL.LINE, AND COLOR.CONFIDENCE.CURVE.

Author(s)

Kevin R. Coombes <kcoombes@mdanderson.org>

References

Baggerly, K.A., Coombes, K.R., Hess, K.R., Stivers, D.N., Abruzzo, L.V., Zhang, W.
Identifying differentially expressed genes in cDNA microarray experiments. J Comp Biol.
8:639-659, 2001.

Coombes, K.R., Highsmith, W.E., Krogmann, T.A., Baggerly, K.A., Stivers, D.N., Abruzzo,
L.V. Identifying and quantifying sources of variation in microarray data using high-density
cDNA membrane arrays. J Comp Biol. 9:655-669, 2002.

Altman DG, Bland JM. Measurement in Medicine: the Analysis of Method Comparison
Studies. The Statistician, 1983; 32: 307-317.

30

See Also

Bum, MultiTtest, SingleGroup, TwoGroupStats.

Examples

bogus <- matrix(rnorm(30*1000, 8, 3), ncol=30, nrow=1000)

splitter <- rep(FALSE, 30)

splitter[16:30] <- TRUE

x <- TwoGroupStats(bogus, splitter)

y <- SmoothTtest(x)

opar <- par(mfrow=c(2, 3), pch='.')

plot(y, badch=2, goodflag=1)

par(opar)

cleanup

rm(bogus, splitter, x, y, opar)

TNoMSummary-class The TNoMSummary Class

Description

An implementation class. Users are not expected to create these objects directly; they are
produced as return objects from the summary method for TNoM.

Slots

TNoM: Object of class TNoM

counts: Object of class numeric

Methods

show signature(object = TNoMSummary): Print the object, which contains a summary
of the underlying TNoM object. In particular, the summary reports the number of genes
acheiving each possible number of misclassifications.

Author(s)

Kevin R. Coombes <kcoombes@mdanderson.org>

See Also

TNoM

Examples

See the examples for the TNoM class.

31

TNoM-class The TNoM and fullTNoM Classes

Description

Implements the ”Total Number of Misclassifications” method for finding differentially ex-
pressed genes.

Usage

TNoM(data, classes, verbose = TRUE)
S4 method for signature 'TNoM':
summary(object, ...)
S4 method for signature 'TNoM':
update(object, nPerm, verbose=FALSE, ...)
S4 method for signature 'TNoM':
selectSignificant(object, cutoff, ...)
S4 method for signature 'TNoM':
countSignificant(object, cutoff, ...)

S4 method for signature 'fullTNoM, missing':
plot(x, ...)
S4 method for signature 'fullTNoM':
hist(x, ...)

Arguments

data Either a data frame or matrix with numeric values or an exprSet as
defined in the BioConductor tools for analyzing microarray data.

classes If data is a data frame or matrix, then classes must be either a logical
vector or a factor. If data is an exprSet, then classes can be a character
string that names one of the factor columns in the associated phenoData
subobject.

verbose A logical flag; whether to print out intermediate results

object A TNoM object

nPerm An integer; the number of permutations to perform

cutoff An integer

x A fullTNoM object

... Additional plotting or other arguments.

Details

The TNoM method was developed by Yakhini and Ben-Dor and first applied in the melanoma
microarray study by Bittner and colleagues (see references). The goal of the method is to
detect genes that are differentially expressed between two groups of samples. The idea is

32

that each gene serve as a potential classifier to distinguish the two groups. One starts by
determining an optimal cutoff on the expression of each gene and counting the number of
miscalssifications that gene makes. Next, we bin genes based on the total number of mis-
classifications. This distribution can be compared with the expected value (by simulating
normal data sets of the same size). Alternatively, one can estimate the null distribution
directly by srambling the sample labels to perform a permutation test.

The TNoM constructor computes the optimal cutoffs and the misclassification rates. The
update method performs the simulations and permutation tests, producing an object of the
fullTNoM class.

Value

summary returns a TNoMSummary object.

update returns a fullTNoM object.

selectSignificant returns a vector of logical values.

countSignificant returns an integer.

Creating Objects

As usual, objects can be created by new, but better methods are available in the form of
the TNoM function. The inputs to this function are the same as those used for row-by-row
statistical tests throughout the ClassComparison package; a detailed description can be
found in the MultiTtest class.

Slots

Objects of the TNoM class have the following slots:

data: The data matrix used to contruct the object

tnomData: A numeric vector, whose length is the number of rows in data, recording the
minimum number of misclassification acheived using this data row.

nCol: The number of columns in data

nRow: The number of rows in data

classifier: The classification vector used to create the object.

call: The function call that created the object

Objects of the fullTNoM class have the following slots:

dex: Numeric vector of the different possible numbers of misclassifications

fakir: Numeric vector of expected values based on simulations

obs: Numeric vector of observed values

scr: Numeric vector of values based on a permutation test

name: A character string with a name for the object

33

Methods

Objects of the TNoM class have the following methods:

summary(object, ...) Write out a summary of the object, including the number of genes
acheiving each possible number of misclassifications.

countSignificant(object, cutoff, ...) Count the number of significant genes at the given
cutoff.

selectSignificant(object, cutoff, ...) Get a vector for selecting the number of significant
genes at the given cutoff.

update(object, nPerm, verbose=FALSE, ...) Perform simulation and permutation tests
on the TNoM object.

Objects of the fullTNoM class have the following methods:

plot(x, ...) Plot a summary of the TNoM object. This consists of three curves: the ob-
served cumulative number of genes at each misclassification level, along with the cor-
responding numbers expected based on simulations or permutation tests. The colors
of the curves are controlled by the values of COLOR.OBSERVED, COLOR.EXPECTED, and
COLOR.PERMTEST

hist(x, ...) Plot a not terribly useful nor informative histogram of the results.

Author(s)

Kevin R. Coombes <kcoombes@mdanderson.org>

References

Bittner M, Meltzer P, Chen Y, Jiang Y, Seftor E, Hendrix M, Radmacher M, Simon R,
Yakhini Z, Ben-Dor A, Sampas N, Dougherty E, Wang E, Marincola F, Gooden C, Lueders
J, Glatfelter A, Pollock P, Carpten J, Gillanders E, Leja D, Dietrich K, Beaudry C, Berens
M, Alberts D, Sondak V. Molecular classification of cutaneous malignant melanoma by gene
expression profiling. Nature. 2000 Aug 3;406(6795):536-40.

See Also

MultiTtest, MultiWilcoxonTest, link{Bum}

Examples

n.genes <- 200

n.samples <- 10

bogus <- matrix(rnorm(n.samples*n.genes, 0, 3), ncol=n.samples)

splitter <- rep(FALSE, n.samples)

splitter[sample(1:n.samples, trunc(n.samples/2))] <- TRUE

tn <- TNoM(bogus, splitter)

summary(tn)

tnf <- update(tn)

34

plot(tnf)

hist(tnf)

rm(bogus, splitter, n.genes, n.samples, tn, tnf)

35

	Dudoit-class
	Sam-class
	SingleGroup-class
	TwoGroupStats-class
	Bum-class
	BumSummary-class
	dwil
	matrixT
	MultiLinearModel-class
	MultiTtest-class
	MultiWilcoxonTest-class
	rankSum
	SamSummary-class
	significant
	SmoothTtest-class
	TNoMSummary-class
	TNoM-class

