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1 Introduction

OOMPA is a suite of object-oriented tools for processing and analyzing large
biological data sets, such as those arising from mRNA expression microarrays
or mass spectrometry proteomics. The ClassComparison package in OOMPA
provides tools to work on the “class comparison” problem. Class comparison is
one of the three primary types of applictions of microarrays described by Richard
Simon and colleagues. The point os these problems is to identify genes that
behave differently in known classes; in other words, a typical class comnparison
problem is to find the genes that are differentially expressed between two types
of samples.

2 Getting Started

No one will be surprised to learn that we start by loading the package into the
current R session:

> library(ClassComparison)

For the examples in this vignette, we will use simulated data that represents
different groups of samples:
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> nGenes <- 5000

> nSamp <- 15

> nDif <- 150

> delta <- 1

> fake.class <- factor(rep(c("A", "B"), each = nSamp))

> fake.data <- matrix(rnorm(nGenes * nSamp * 2), nrow = nGenes,

+ ncol = 2 * nSamp)

> fake.data[1:nDif, 1:nSamp] <- fake.data[1:nDif, 1:nSamp] + delta

> fake.data[(nDif + 1):(2 * nDif), 1:nSamp] <- fake.data[(nDif +

+ 1):(2 * nDif), 1:nSamp] - delta

3 Gene-by-gene t-tests

The simplest weay to find differentially expressed genes is to perform a two-
sample t-test on each gene. The MultiTtest class handles this operation, with
a summary that carefully ensures that you know which class is associated with
a positive t-statistic.

> mtt <- MultiTtest(fake.data, fake.class)

> summary(mtt)

Row-by-row two-sample t-tests with 5000 rows
Positive sign indicates an increase in class: A

Call: MultiTtest(data = fake.data, classes = fake.class)

T-statistics:
Min. 1st Qu. Median Mean 3rd Qu. Max.

-7.1270000 -0.7330000 -0.0007713 -0.0143000 0.7303000 5.4240000

P-values:
Min. 1st Qu. Median Mean 3rd Qu. Max.

9.362e-08 2.022e-01 4.700e-01 4.730e-01 7.384e-01 1.000e+00

4 Beta-uniform mixture models for multiple test-
ing

As everyone now knows, an inherent difficulty with performing a separate test
for each gene is that the p-values must be adjusted to account for multiple
testing. A simple approach models the set of p-values using a beta-uniform
mixture (BUM). We can perform this analysis quite simply:

> bum <- Bum(mtt@p.values)

> summary(bum)
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> hist(mtt, breaks = 101)

> plot(mtt)

> plot(mtt, mtt@p.values)
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Figure 1: Histogram of the gene-by-gene two-sample t-statistics
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Beta-Uniform Mixture Model

MLE Estimates: ahat = 0.36619 , lhat = 0.84058
Upper Bound on Fraction Unchanged: pihat = 0.89896

tau TP FN FP TN
1 0.01 0.02893862 0.07210223 0.008989592 0.8899696

The default value of the summary command is not very enlightening, but we
can get a graphical overview of the distribution. The region below the horizontal
blue line in Figure 3 represents the uniform component of the mixture (i.e., genes
that are not differentially expressed); the region between the blue line and the
green curve represents the beta component (i.e., genes that are differentially
expressed). If we set a threshold for significance using some cutoff on the p-
value (such as the one indicated by the vertical purple line in Figure 3), then we
can divide the area into four regions represnting true positives, false positives,
true negatives, and false negatives. These areas can then be used to estimate
the false discovery rate (FDR) as a function of the threshold (Figure ??).

The usual application of this idea is to choose a threshold that achieves a
desired level of FDR. For example, selecting genes with a p-value less than

> cutoffSignificant(bum, alpha = 0.1, by = "FDR")

[1] 0.002015007

should keep the FDR less than 10%. The number of such genes is easily obtained
with the command:

> countSignificant(bum, alpha = 0.1, by = "FDR")

[1] 108

You can also get a logical vector that selects the significant genes:

> selected <- selectSignificant(bum, alpha = 0.1, by = "FDR")

In our example, the truly significant genes are iamong the first 300 genes. We
can use this information to find out how close we are to the truth; the achieved
FDR in this simulated example is pretty close to the target value of 10%.

> truth <- rep(FALSE, nGenes)

> truth[1:(2 * nDif)] <- TRUE

> sum(selected & truth)

[1] 99

> mean(!truth[selected])

[1] 0.08333333
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> hist(bum)

> abline(v = 0.05, col = "purple", lwd = 2)
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Empirical Bayes
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Figure 2: Results of the BUM analysis of the p-values.
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> image(bum)
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Figure 3: Results of the BUM analysis of the p-values.
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5 Wilcoxon rank sum tests and empirical Bayes

In many applications of microarrays, it is unclear how trhe data should be
transofrmed to achieve the approximate normality needed to justify a t-test. It
may just be simpler to ignore the transformation problem and use nonparametric
methods, like the Wilcoxon rank-sum test, that only use the ranks of the samples
for the expression of each gene.

> mw <- MultiWilcoxonTest(fake.data, fake.class)

> summary(mw)

Call: MultiWilcoxonTest(data = fake.data, classes = fake.class)
Row-by-row Wilcoxon rank-sum tests with 5000 rows

Rank-sum statistics:
Min. 1st Qu. Median Mean 3rd Qu. Max.
126.0 215.0 232.0 232.3 251.0 330.0

Large values indicate an increase in class: A

With prior = 1 and alpha = 0.9
the upper tail contains 22 values above 312
the lower tail contains 28 values below 154

A histogram (Figure 4) of the Wilcoxon statistics indicates that the observed
values have larger tails than expected by chance, suggesting that we ought to
be able to pick out some genes that are significantly different. To do this, we
use an empirical Bayes method originally suggested by Efron and Tibshirani.
The idea is that we can decompose the WIlcoxon statistics as a mixture of those
that arise from the null distribution (which is Wilcoxon with parameters based
on the number of samples in each group) and some othe component represnting
the differentially edxpressed genes. In that case, we can write the observed
distribution f(x) in the form:

f(x) = πf0(x) + (1− π)f1(x)

where f0(x) is the known Wilcoxon distribution and f1(x) is unknown. Since we
can estimate f(x) from the opbserved data, we can simply solve for the unknown
distribution f1(x) provided we know the mixing parameter π, which represents
the prior probability that a gene is not differentially expressed. The “empirical”
part of this empirical Bayes method comes down to selecting the prior π after
looking at the data. For, if we start with π = 1, the posterior probability
of being differntially expressed as a function of the observed statistic ends up
taking on negative values (Figure 6), which is rather unpleasant.

By trial and error, we can find a value for π that ensures that the posterior
probabilities are always positive (Figure ??). In this case, something close to
0.94 works okay. We can then use a threshold on the posterior probabilities to
set a significance cutoff on the Wilcoxon statistics.
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> hist(mw)
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Figure 4: Histogram of the observed gene-by-gene Wilcoxon statistics.
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> plot(mw)

> abline(h = 0)
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Figure 5: Plot of the posterior probability of being differentially expressed,
assuming a priori that no gensd are different.
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> plot(mw, prior = 0.94, signif = 0.9)

> abline(h = 0)
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Figure 6: Plot of the posterior probability of being differentially expressed,
assuming a priori that 94% of the genes are not different.
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> cutoffSignificant(mw, prior = 0.94, signif = 0.8)

$low
[1] 161

$high
[1] 306

> countSignificant(mw, prior = 0.94, signif = 0.8)

[1] 92

> wilsel <- selectSignificant(mw, prior = 0.94, signif = 0.8)

> sum(selected & wilsel)

[1] 84

> sum(truth & wilsel)

[1] 84
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