
Quantifying Proteins 2: Lysate Arrays

Keith Baggerly

June 16, 2006

The SuperCurve package provides tools for the analysis of reverse-phase
protein arrays (RPPAs), which are also known as“tissue lysate arrays”or simply
“lysate arrays”.

A Detailed Example: Breast Cancer Cell Lines

We begin with an example where we were attempting to measure the relative
abundances of several proteins within a panel of 40 breast cancer cell lines.
The proteins were chosen largely from the PI3K pathway, which is frequently
disregulated in tumors. We’re going to focus on 3 arrays from this study, corre-
sponding to the proteins AKT, β-catenin, and ERK2. These data are included
as the rppaCell data file, described as rppaCellData.

Getting Started

> options(width = 60)

> library(SuperCurve)

Loading required package: MASS

> data(rppaCell)

> ls()

[1] "akt" "c.erk2" "ctnnb1" "design40"

There are two types of objects in the data file. First, we have an RPPADesign
object, design40 (for 40 cell lines), giving the layout of the array. For each
spot, this specifies what sample has been printed, and what the dilution level
offset of that spot is (in log2 units) relative to the reference level we’re trying
to estimate. Second, we have several RPPA objects, akt, c.erk2, and ctnnb1,
each containing the spot-level quantifications supplied by the microarray image
quantification software. These arrays were quantified using MicroVigene.

1

RPPA Details

If you’d like to take a look at the initial text files with the quantifications, feel
free; these are also included. These also allow us to illustrate how an RPPA
object can be constructed from a MicroVigene txt file:

> superHome <- system.file(package = "SuperCurve")

> aktHome <- "rppaCellData/Akt.txt"

> aktTake2 <- RPPA(file = aktHome, path = superHome)

> class(aktTake2)

[1] "RPPA"
attr(,"package")
[1] "SuperCurve"

This RPPA object is the same as akt. Now, there’s really not that much to an
RPPA object:

> slotNames(aktTake2)

[1] "data" "file"

> aktTake2@file

[1] "rppaCellData/Akt.txt"

just the data frame containing the quantifications and the file the data was
acquired from.

Now, we’ve seen what the file slot contains, but what about data? As men-
tioned above, it’s simply a data frame, with named components corresponding
for the most part to measurements associated with each spot. Several of the
functions that act on RPPA objects have a “measure” argument, and they’re
simply looking for the name of the appropriate component. What do we have
here?

> summary(aktTake2)

An RPPA object loaded from rppaCellData/Akt.txt

Main.Row Main.Col Sub.Row
Min. :1.00 Min. : 1.0 Min. :1.00
1st Qu.:1.75 1st Qu.: 3.0 1st Qu.:1.75
Median :2.50 Median : 5.5 Median :2.50
Mean :2.50 Mean : 5.5 Mean :2.50
3rd Qu.:3.25 3rd Qu.: 8.0 3rd Qu.:3.25
Max. :4.00 Max. :10.0 Max. :4.00

Sub.Col Sample Mean.Net
Min. :1.00 sample 39: 16 Min. : 279

2

1st Qu.:1.75 sample 40: 16 1st Qu.: 2506
Median :2.50 sample1 : 16 Median : 6585
Mean :2.50 sample10 : 16 Mean : 8022
3rd Qu.:3.25 sample11 : 16 3rd Qu.:13042
Max. :4.00 sample12 : 16 Max. :22090

(Other) :544
Mean.Total Median.Net Vol.Bkg

Min. : 783 Min. : 210 Min. : 23520
1st Qu.: 4176 1st Qu.: 2455 1st Qu.: 66936
Median : 8916 Median : 7119 Median : 88560
Mean :10210 Mean : 8525 Mean :104179
3rd Qu.:15522 3rd Qu.:14078 3rd Qu.:119856
Max. :25409 Max. :23008 Max. :594624

Vol.Dust
Min. :0
1st Qu.:0
Median :0
Mean :0
3rd Qu.:0
Max. :0

> names(aktTake2@data)

[1] "Main.Row" "Main.Col" "Sub.Row" "Sub.Col"
[5] "Sample" "Mean.Net" "Mean.Total" "Median.Net"
[9] "Vol.Bkg" "Vol.Dust"

Most of the columns have ready interpretations, but the first 6 here are spe-
cial. An RPPA object must have Main.Row, Main.Col, Sub.Row, and Sub.Col to
specify the position of the spot, Sample to tell us what the software thinks was
printed, and Mean.Net as a background-corrected measure of spot intensity.

The constructor function is tuned for MicroVigene files at present. If we
have other types of data files, we might want to assemble an RPPA object more
directly. The package vignette provides more details here.

Given an RPPA, one of the first things we can do is simply look at the data,
by checking heatmap images of the quantifications spatially arranged to match
their positioning on the array.

> image(akt)

3

10 20 30 40

5
10

15

Mean.Net

1:mx

1:
m

y

By default, image will use “Mean.Net” as the measure. Different spots on the
array are separated by white lines, and different subgrids (patches) are separated
by black lines. Here, we can see that the top 2 rows in each patch are different
than the bottom 2 rows. To see how big the difference is, let’s add a colorbar:

> image(akt, "Mean.Net", colorbar = TRUE)

4

50
00

10
00

0
15

00
0

20
00

0

10 20 30 40

5
10

15

Mean.Net

1:mx

1:
m

y

The top 2 rows are decidedly brighter. This pattern is due to the design of the
arrays used in this experiment. Every patch corresponds to a different sample,
and the spots within a patch comprise two replicates of an 8-step dilution series
(protein concentration decreases moving from left to right here). The top 2 rows
are replicates of the first 4 dilution steps, and the bottom 2 rows are replicates
of the last 4. We’ll return to the design shortly.

In addition to measures of foreground intensity such as Mean.Total or Mean.Net,
measures of background (such as “Vol.Bkg”) can often suggest potential prob-
lems. For example,

> image(akt, "Vol.Bkg", colorbar = TRUE)

shows that something odd may have happened in the patch at Main.Row 3,
Main.Col 6 (try calling image with“Main.Row”or “Main.Col” as the measure to
get a better feel for the coordinates, if needed). Thus, we’ll pay special attention
to the results from this patch. We note in passing that the numbers for Vol.Bkg
correspond to the estimated background at the spot times the number of pixels
in the spot, and as such aren’t directly comparable to the values from Mean.Net
(especially as the size of the spot can vary). The scaled background values
correspond to the difference between Mean.Total and Mean.Net. If desired, we
can explore the exact relationship further:

> attach(akt@data)

> plot(Vol.Bkg/(Mean.Total - Mean.Net))

5

> detach("akt@data")

Similar checks of the background for the other RPPA objects show that there
appears to be a problem affecting the bottom edge of the β-catenin slide, ctnnb1.

> image(ctnnb1, "Vol.Bkg", colorbar = TRUE)

Estimates for samples in these regions are decidedly suspect.

RPPADesign Details

Now, the RPPA objects are only part of the story; we can’t proceed to quantify
the different samples unless we know the layout of the samples on the array.
This information is contained in an RPPADesign object, here design40. Let’s
take a closer look at that.

> class(design40)

[1] "RPPADesign"
attr(,"package")
[1] "SuperCurve"

> slotNames(design40)

[1] "layout" "alias" "sampleMap" "controls"

> class(design40@layout)

[1] "data.frame"

The RPPADesign object has 4 slots: layout, alias, sampleMap, and controls.
Of these, the most important is layout, which is a data frame specifying what
is printed at each spot. If we take a look at the contents of the layout,

> names(design40@layout)

[1] "Main.Row" "Main.Col" "Sub.Row" "Sub.Col" "Sample"
[6] "Steps" "Series"

most of the terms look familiar. Main.Row, Main.Col, Sub.Row and Sub.Col
specify the position of the spot on the array. Sample gives the name of the
biological sample printed at the spot. Steps gives the dilution step of the spot
within the sample in terms of a log2 offset relative to a reference point within
the series. Finally, Series lets us subset the measurements within a sample, if
desired. (This can be useful as a check for consistency, particularly if replicate
series are printed in different patches on the array.) To make this clearer, let’s
take a look at the first few entries.

> design40@layout[1:17,]

6

Main.Row Main.Col Sub.Row Sub.Col Sample Steps
1 1 1 1 1 sample1 3.5
2 1 1 1 2 sample1 2.5
3 1 1 1 3 sample1 1.5
4 1 1 1 4 sample1 0.5
5 1 1 2 1 sample1 3.5
6 1 1 2 2 sample1 2.5
7 1 1 2 3 sample1 1.5
8 1 1 2 4 sample1 0.5
9 1 1 3 1 sample1 -0.5
10 1 1 3 2 sample1 -1.5
11 1 1 3 3 sample1 -2.5
12 1 1 3 4 sample1 -3.5
13 1 1 4 1 sample1 -0.5
14 1 1 4 2 sample1 -1.5
15 1 1 4 3 sample1 -2.5
16 1 1 4 4 sample1 -3.5
17 1 2 1 1 sample2 3.5

Series
1 sample1.Rep1
2 sample1.Rep1
3 sample1.Rep1
4 sample1.Rep1
5 sample1.Rep2
6 sample1.Rep2
7 sample1.Rep2
8 sample1.Rep2
9 sample1.Rep1
10 sample1.Rep1
11 sample1.Rep1
12 sample1.Rep1
13 sample1.Rep2
14 sample1.Rep2
15 sample1.Rep2
16 sample1.Rep2
17 sample2.Rep1

For this array, the first 16 spots comprise the patch in the upper left hand
corner, and all of these spots are derived from sample 1. The reference point
was taken to be midway through the 8-step dilution series, so the most intense
(undiluted) spots have a step value of 3.5. The replicate measurements for this
sample have been arbitrarily grouped into two distinct “series”, in part as a
consistency check. When we estimate protein concentrations, we produce an
estimate for each series; series from the same sample should yield similar values.
The pattern shown here is repeated for the other patches on the array.

7

The trickiest part of constructing an RPPADesign object is often the specifi-
cation of the dilution pattern and the grouping into series. For example,

> steps <- rep(c(rep(8:5, 2), rep(4:1, 2)), 40) -

+ 4.5

> rep.temp <- factor(paste("Rep", rep(rep(1:2, each = 4),

+ 80), sep = ""))

> series <- factor(paste(as.character(akt@data$Sample),

+ as.character(rep.temp), sep = "."))

> design40Take2 <- RPPADesign(akt, steps = steps,

+ series = series)

This version of the constructor extracts some of the needed layout information
from the RPPA object itself. Now, we can construct an RPPADesign using a more
low-level approach, such as reading the Sample information (and possibly the
dilution levels as well) from a separate file. I wouldn’t try entering the code
block below, but rather just skim it to see if the structure makes sense.

> superHome <- system.file(package = "SuperCurve")

> aktHome <- "rppaCellData/Akt.txt"

> aktRead <- paste(superHome, aktHome, sep = "/")

> aktTemp <- read.table(file = aktRead, header = T,

+ sep = "\t", skip = 4, fill = T)

> names(aktTemp)[5] <- "Sample"

> aktTemp <- aktTemp[, names(aktTemp) %in% c("Main.Row",

+ "Main.Col", "Sub.Row", "Sub.Col", "Sample")]

> steps <- rep(c(rep(8:5, 2), rep(4:1, 2)), 40) -

+ 4.5

> rep.temp <- factor(paste("Rep", rep(rep(1:2, each = 4),

+ 80), sep = ""))

> series <- factor(paste(as.character(aktTemp$Sample),

+ as.character(rep.temp), sep = "."))

> aktLayout <- data.frame(aktTemp, Steps = steps,

+ Series = series)

> aktNames <- levels(aktLayout$Sample)

> aktAlias <- data.frame(Alias = aktNames, Sample = aktNames)

> aktSampleMap <- as.vector(tapply(as.character(aktLayout$Sample),

+ list(series), function(x) x[[1]]))

> names(aktSampleMap) <- levels(aktLayout$Series)

> design40Take3 <- new("RPPADesign", layout = aktLayout,

+ alias = aktAlias, sampleMap = aktSampleMap)

Rather ornate, but it pulls things together.

RPPAFit Details

Given an RPPADesign and an RPPA, we can use a model to estimate the protein
concentrations, producing an RPPAFit.

8

For our fitting, we assume that the observed intensity for sample i, dilution
step j, replicate k can be fit as

yijk = α + β ∗ g(γ(δi + xij)) + εijk,

where g(x) = ex/(1 + ex). The shape paramters of the logistic response curve,
α, β, and γ are common for all samples. The xij are known offsets from the
level of interest, such as the undiluted or “neat” state. We typically use log2

units for xij , letting the adjustment to base e be subsumed into γ. The δi

terms represent the unknown true protein concentration at the reference level
for sample i. Finally, εijk is taken to be white noise.

The fitting function RPPAFit requires that we specify the measure to be used,
in addition to the RPPA and RPPADesign.

> aktFit <- RPPAFit(akt, design40, "Mean.Net")

> class(aktFit)

[1] "RPPAFit"
attr(,"package")
[1] "SuperCurve"

> slotNames(aktFit)

[1] "call" "rppa" "design"
[4] "measure" "method" "coefficients"
[7] "concentrations" "lower" "upper"
[10] "conf.width" "intensities" "linear.p"
[13] "slope" "p.values" "ss.ratio"
[16] "warn" "version"

> aktFit@call

RPPAFit(rppa = akt, design = design40, measure = "Mean.Net")

> aktFit@version

[1] "0.93"

This fits the basic SuperCurve model: a logistic dose response curve common
to all samples, with a separate offset term for each series (not sample).

We can get a quick feel for the shape of the curve by looking at a “cloud”
plot showing the observed intensity and estimated log protein concentration for
each spot:

> plot(aktFit)

The data appears to follow the curve pretty well here. We can get a better
idea of how good the fit is by decomposing the observed values into “fitted” +
“residuals”. In looking at the fitted values, we need to keep in mind that the
model we are using results in fitted values for the observations in terms of both
intensity (the default, or “Y”) and log concentration (“X”).

9

> plot(fitted(aktFit, "X"), fitted(aktFit))

> plot(fitted(aktFit, "X"), resid(aktFit))

Q: Is the variance stable as a function of the mean? This version of the package
does not address this issue.

There is at least one clear outlier in the residuals. We may be able to
understand this better if we look at the residuals arranged spatially:

> image(aktFit)

The most extreme residuals are located in the patch in Main.Row 3, Main.Col
6, which we had already flagged for attention when we looked at the RPPA based
on odd behavior in the background.

We can also look at fits of each individual series to the underlying response
curve:

> oldAsk <- par(ask = TRUE)

> plot(aktFit, type = "individual")

> par(oldAsk)

So, what was the estimated concentration for the first series? We can find
out in a few different ways.

> aktFit@concentrations[1]

sample1.Rep1
-2.590578

> aktFit@concentrations["sample1.Rep1"]

sample1.Rep1
-2.590578

Individual elements are named, so we can readily extract information about the
samples of interest. Similarly, we can get the parameters for the fitted model in
a few different ways.

> coefficients(aktFit)

alpha.alpha beta.beta gamma
60.077188 21944.853236 0.584724

> coef(aktFit)

alpha.alpha beta.beta gamma
60.077188 21944.853236 0.584724

> aktFit@coefficients

alpha.alpha beta.beta gamma
60.077188 21944.853236 0.584724

10

Now, at this point we’ve computed fits by series. We can use this to give us
some idea of the stability of the results for a sample by doing the equivalent of
an MA-plot, plotting the difference in replicates (proportional to the standard
deviation) as a function of their average.

> M1 <- (aktFit@concentrations[seq(2, 80, 2)] -

+ aktFit@concentrations[seq(1, 80, 2)])

> A1 <- (aktFit@concentrations[seq(2, 80, 2)] +

+ aktFit@concentrations[seq(1, 80, 2)])/2

> plot(A1, M1)

Eyeballing the fit suggests a standard deviation of about 0.2 (in log2 units).
Given the x-range, this is acceptable. Of course, if we know that replicates
agree fairly well, we’d like to go back and fit the results for each sample without
splitting things up!

The main thing this requires is a slightly different RPPADesign, grouping all
spots from a single sample together.

> steps <- rep(c(rep(8:5, 2), rep(4:1, 2)), 40) -

+ 4.5

> series <- akt@data$Sample

> design40Sample <- RPPADesign(akt, steps = steps,

+ series = series)

Now, we simply rerun the fit

> aktFitSample <- RPPAFit(akt, design40Sample, "Mean.Net")

More Generic Goals

Using the design40Sample design object, fit akt, c.erk2, and ctnnb1. Extract
the estimated sample concentrations and bind them into a matrix. Try this for
both Mean.Total and Mean.Net. Describe the pros and cons of using Mean.Net
and Mean.Total for c.erk2.

Cluster the samples using hclust. Now, add 10 to all of the akt measure-
ments and subtract 10 from all of the ctnnb1 measurements. Do your cluster
results change? We only know the values for each protein up to an additive
offset; we do not have absolute values. Any metric we use for clustering should
give results that are invariant with respect to these types of changes. This
means that different metrics are required for clustering samples and clustering
proteins.

When we estimate the concentrations on the dilution curve, estimates where
many of the spots are at extremely low (background) or extremely high (satu-
ration) levels are very unstable. One way to correct for this is to add upper and
lower bounds to the values that will be used. For example, if we extract the
coefficients for the fitted logistic model, we can identify the concentration such
that the fitted intensity is more than α + 0.99β. If the estimated concentration

11

at the midpoint of the dilution series is above this cutoff (i.e., more than half
of the observations are saturated), reset the estimate so that the midpoint is at
the threshold noted. We can apply a similar heuristic for concentrations below
α + 0.01β. How would this rule alter the results for akt?

We’ve also included a second small data set, rppaTumor. Try fitting the
arrays in rppaTumor. Note that the arrays used here have a different design.
Do you see how the design could be assembled? Note that in this design, the
controls slot of the design is not empty. What does it contain? Why does this
matter?

We are extremely aware of the limitations of the current version of the pack-
age (it’s not robust enough with respect to extreme outliers, for example). What
functionality should we add to the package? Is there any we should remove?

There is one important issue that we don’t know how to resolve within R.
Specifically, we have found it vital to look at the grayscale TIFF images, and
not just the quantifications, when trying to develop intuition about how the
data works. Due to the nature of TIFF files, R does not have a TIFF reader.
Eventually we’ll get there! In the meantime, however, find an image viewer for
your machine that you can be happy with.

12

