
getConfidenceInterval

Compute Confidence Intervals for a Model Fit to Dilution Series

Description

This function computes confidence intervals for the estimated concentrations in a four-
parameter logistic model fit to a set of dilution series in a reverse-phase protein array
experiment.

Usage

getConfidenceInterval(result, alpha = 0.1, nSim = 50)

Arguments

result A RPPAFit object representing the result of fitting a four-parameter lo-
gistic model

alpha The desired significance of the confidence interval; the width of the re-
sulting interval is 1 - alpha.

nSim The number of times to resample the data in order to estimate the confi-
dence intervals.

Details

In order to compute the confidence intervals, the function assumes that the errors in the
observed Y intensities are independent normal values, with mean centered on the estimated
curve and standard deviation that varies smoothly as a function of the (log) concentra-
tion. The smooth function is estimated using loess. The residuals are resampled from
this estimate and the model is refit; the confidence intervals are computed empirically as
symmetrically defined quantiles of the refit parameter sets.

Value

An object of the RPPAFit class, containing updated values for the slots lower, upper, and
conf.width that describe the confidence interval.

Author(s)

Kevin R. Coombes <kcoombes@mdanderson.org>

References

KRC

1

See Also

RPPAFit-class, RPPAFit

Examples

path <- system.file("rppaCellData", package="SuperCurve")

akt <- RPPA("Akt.txt", path=path)

design <- RPPADesign(akt, grouping="blockSample",

controls=list("neg con", "pos con"))

fit.nls <- RPPAFit(akt, design, "Mean.Net")

Warning: this takes a while!

fit.nls <- getConfidenceInterval(fit.nls, alpha=0.10, nSim=50)

RPPA-class The RPPA Class

Description

The RPPA class represents the raw quantification data from a reverse-phase protein array
experiment.

Usage

RPPA(filename, path = ".")

S4 method for signature
�

RPPA
�

:

summary(object, ...)

S4 method for signature
�

RPPA
�

:

image(x, measure = "Mean.Net", main = measure, colorbar

= FALSE, col = terrain.colors(256), ...)

Arguments

filename The name of a file containing MicroVigene quantifications of a reverse-
phase protein array experiment.

path An optional argument giving the path from the current directory to the
file. The default value assumes the file is contained in the current direec-
tory.

object An RPPA object.

x An RPPA object.

measure A character string containing the name of the measurement column in
data that should be displayed by the image method.

main A character string used to title the image plot

colorbar A logical value that determines whether to include a color bar in the plot.
Default is FALSE.

2

col The usual graphics parameter used by image. It is included here to change
the default color scheme to use terrain.colors.

... The usual extra arguments for generic or plotting routines.

Details

The data frame slot (data) in a valid RPPA object constructed from a MicroVigene input
file using the RPPA function is guaranteed to contain at least 6 columns of information:
Main.Row, Main.Col, Sub.Row, Sub.Col, Sample, and Mean.Net. The first four pieces of
information give the logical location of a spot on an array, after which we get a unique
identifier of the sample spotted at that location and a measurement that represents the
background-corrected mean intensity of the spot. Additional columns may be included or
may be added later.

Value

The RPPA constructor returns an object of the RPPA class.

The summary method returns a summary of the underlying data frame.

The image method invisibly returns the RPPA object on which it was invoked.

Objects from the Class

Although objects of the class can be created by a direct call to new, the preferred method
is to use the RPPA function.

Slots

data: A data.frame containing the contents of a MicroVigene or other quantification file

file: A character string: the name of the file that the data was loaded from

Methods

summary(object, ...) The summary method prints a summary of the underlying data
frame.

image(x, measure=”Mean.Net”, main=measure, colorbar=FALSE, col=terrain.colors(256), ...)
The image method produces a ”geographic” image of the measurement column named
by the measure argument. The colors in the image represent the intensity of the
measurement at each spot on the array, and the display locations match the row and
column locations of the spot. Any measurement column can be displayed using this
function. An optional color bar can be added; this will be placed at the right edge.

Author(s)

Kevin R. Coombes <kcoombes@mdanderson.org>

References

KRC

3

See Also

RPPAFit, RPPADesign

Examples

path <- system.file("rppaTumorData", package="SuperCurve")

erk2 <- RPPA("ERK2.txt", path=path)

summary(erk2)

image(erk2)

image(erk2, colorbar=TRUE)

image(erk2, "Vol.Bkg", main="Background Estimates", colorbar=TRUE)

rppaCellData AKT, ERK2, and CTNNB1 expression in cell lines

Description

This data set contains the expression levels of three proteins: AKT, ERK2, and beta catenin
(CTNNB1) in 40 cell lines, measured in duplicate dilution series using reverse-phase protein
arrays.

The data set also contains a description of the design of the reverse-phase protein array
used in a set of experiments to measure protein levels in 40 different cell lines. Cell lysates
were spotted on the array in duplicate in eight-step dilution series. The layout of the array
consisted of a 4x10 grid of 4x4 subgrids. Each subgrid contained the duplicate dilution
series for a single sample. Each of the identical top two rows of a subgrid contained the
four most concentrated dilution steps (in decreasing concentrations from left to right), and
the identical bottom two rows contained the four least concentrated dilution steps.

Usage

data(rppaCell)

Format

The objects akt, c.erk2, and ctnnb1 are objects of the RPPA class. The object design40
is an object of the RPPADesign class.

Source

Bryan Hennessey and Gordon Mills

References

KRC

4

RPPADesign-class The RPPADesign Class

Description

This class represents the information that describes how a particular set of RPPA slides
was designed.

Usage

RPPADesign(raw, steps = NULL, series = NULL,

grouping = c("byRow","byCol", "bySample", "blockSample"),

ordering = c("decreasing","increasing"),

alias = NULL, center = FALSE, controls = list())

seriesNames(design)

getSteps(design)

S4 method for signature
�

RPPADesign
�

:

image(x, ...)

S4 method for signature
�

RPPADesign
�

:

summary(object, ...)

S4 method for signature
�

RPPADesign
�

:

names(x)

Arguments

raw A data frame or an RPPA object.

steps An optional numeric vector listing the dilution step associated with each
spot, on a logarithmic scale.

series An optional character vector or factor identifying the dilution series to
which each spot corresponds.

grouping Describes the way dilution series are oriented on the array.

ordering Are dilution series arranges in order of increasing or decreasing con-
centrations. Default is decreasing.

alias A data frame containing two columns: Alias and Sample

center A logical value: if TRUE, then dilution steps are centered around 0.

controls A list containing the character strings that identify control spots on the
array.

x A RPPADesign object

object A RPPADesign object

design A RPPADesign object

... The usual extra arguments for generic or plotting routines.

5

Details

From their inception, reverse-phase protein array experiments have spotted samples on the
array in dilution series. Thus, a critical aspect of the design and analysis is to understand
how the dilution series are placed on the array.

The optional grouping and ordering arguments allow the user to specify several standard
layouts without having to go into great detail. The most common layout is byRow, which
indicates that each row of a subgrid on the array should be considered as a separate dilution
series. Although considerably less common (for reasons related to the robotics of how arrays
are printed), the byCol layout indicates that each column of a subgrid is its own dilution
series. The bySample layout means that each unique sample name indicates its own dilution
series. Finally, the blockSample layout indicates that all occurrences of a sample name
within a subgrid (or block) refer to the same dilution series. The blockSample layout can
be used, for example, when a dilution series is long enough to extend over more than one
row of a subgrid. One layout we have seen used seven dilution steps followed by a control
spot, contained in two successive rows of a design with 4x4 subgrids, leading to the pattern:

7654

321C

If the design of an RPPA experiment does not follow one of the built-in patterns, you can
create an object by supplying vectors of dilution series names (in the series argument) and
corresponding dilution steps (in the steps argument) that explicitly provide the mapping
for each spot.

Value

The image method invisibly returns the displayed matrix of dilution steps.

The summary method returns the summary object of the layout data frame.

The names method returns a character vector.

The getSteps function returns a numeric vector containing, for each non-control spot, the
step represented by that spot in its dilution series.

The seriesNames function returns a character vector containing the names of the unique
(non-control) dilution series on the array.

Objects from the Class

Objects of the RPPADesign class should be constructed using the RPPADesign function.

Slots

layout: A data frame

alias: A data frame

sampleMap: A character vector

controls: A list containing the character strings that identify control spots on the array.
Controls are not included as part of any dilution series.

6

Methods

image(x, ...) The image method produces a two-dimensional graphical display of the lay-
out design. Colors are used to represent different dilution steps, and laid out in the
same pattern as the rows and columns of the array. This provides a visual check that
the design has been specified correctly.

summary(object, ...) The summary method lists the names of the control spots on the
array and then prints a summary of the data frame describing the layout.

names(x) The names method returns a character vector containing, for each non-control
spot, the name of the dilution series to which that spot belongs.

Author(s)

Kevin R. Coombes <kcoombes@mdanderson.org>

References

KRC

See Also

RPPA

Examples

path <- system.file("rppaTumorData", package="SuperCurve")

erk2 <- RPPA("ERK2.txt", path=path)

design <- RPPADesign(erk2, grouping="blockSample", center=TRUE)

image(design)

summary(design)

design <- RPPADesign(erk2, grouping="blockSample",

controls=list("neg con", "pos con"))

image(design)

summary(design)

path <- system.file("rppaCellData", package="SuperCurve")

akt <- RPPA("Akt.txt", path=path)

Uses duplicate 8-step dilution series within 4x4 subgrids.

They are interleaved, with the top two identical rows

containing the first 4 steps and the bottom two identical

rows containing the last 4 steps.

steps <- rep(c(rep(8:5, 2), rep(4:1, 2)), 40) - 4.5

rep.temp <- factor(paste(
�

Rep
�

, rep(rep(1:2, each=4), 80), sep=
��

))

series <- factor(paste(as.character(akt@data$Sample),

as.character(rep.temp),

sep=
�

.
�

))

design40 <- RPPADesign(akt, steps=steps, series=series)

image(design40)

summary(design40)

7

RPPAFit-class The RPPAFit Class

Description

Objects of the RPPAFit class represent the results of fitting a four-parameter logistic model
to the dilution series in a reverse-phase protein array experiment.

Usage

S4 method for signature
�

RPPAFit
�

:

summary(object, ...)

S4 method for signature
�

RPPAFit
�

:

coef(object, ...)

S4 method for signature
�

RPPAFit
�

:

coefficients(object, ...)

S4 method for signature
�

RPPAFit
�

:

fitted(object, type=c("Y", "y", "X", "x"), ...)

S4 method for signature
�

RPPAFit
�

:

residuals(object, type=c("raw", "standardized", "linear"), ...)

S4 method for signature
�

RPPAFit
�

:

resid(object, ...)

S4 method for signature
�

RPPAFit
�

:

image(x, type=c("Residuals", "StdRes", "LinRes","X", "Y"), ...)

S4 method for signature
�

RPPAFit
�

:

hist(x, type=c("Residuals", "StdRes", "LinRes"),

xlab = NULL, main = NULL, ...)

S4 method for signature
�

RPPAFit
�

:

plot(x, y, type=c("cloud", "series", "individual"),

xlab="Log Concentration", ylab="Intensity", colors=NULL, ...)

Arguments

object A RPPAFit object.

x A RPPAFit object.

type A list of options describing the type of fitted values, residuals, images,
histograms, or plots.

xlab Graphics parameter; how the x-axis should be labeled.

ylab Graphics parameter; how the y-axis should be labeled.

main Character string used as a title for the plot.

y not used.

colors A graphical parameter, used only if type=’series’, to color the lines
connecting different dilution series. Eight default colors are used if the
argument is NULL.

... The usual extra arguments for generic or plotting routines.

8

Details

The RPPAFit class holds the results of fitting a four-parameter joint logistic model to all
the dilution series on a reverse-phase protein array. For details on how the model is fit, see
the RPPAFit function. The basic mathematical model is given by

Y = α + β ∗ g(γ ∗ (X + δi)),

where Y is the observed intensity and X is the designed dilution step. The heart of the
model is the function g(x) = e

x

1+ex
, which is the inverse of the logistic function

f(x) = log(p/(1 − p)).

By fitting a joint model, we assume that the parameters α, β, and γ are the same for
all dilution series on the array. The real point of the model, however, is to be able to
draw inferences on the δi, which represent the (log) concentrations of the protein present
in different dilution series.

Value

The summary method has no return value.

The coef and coefficients methods return a named vector of length three.

The fitted method returns a numeric vector.

The resid and residuals methods return a numeric vector.

The image method invisibly returns the object x on which it was invoked.

The hist method returns an object of the histogram class.

The plot method invisibly returns the object x on which it was invoked.

Objects from the Class

Objects should be constructed using the RPPAFit function.

Slots

call: A call object: the function call that was used to generate this model fit.

rppa: The RPPA object containing the raw data that was fit

design: The RPPADesign object describing the layout of the array.

measure: A character string containing the name of the measurement column in the raw
data that was fit by the model.

method: A character string containing the name of the method that was used to estimate
the upper and lower limit parameters in the model.

coefficients: A named list containing the estimates of model parameters alpha, beta,
and gamma.

concentration: A vector of estimates of the relative log concentration of protein present
in each sample.

lower: A vector containing the lower bounds on the confidence interval of the log concen-
tration estimates.

9

upper: A vector containing the upper bounds on the confidence interval of the log concen-
tration estimates.

conf.width: The width of the confidence interval.

intensities: The predicted observed intensity at the estimated concentrations for each
dilution series.

linear.p: A vector of p-values for how well a linear model fits each dilution series

ss.ratio: A statistic measuring the goodness-of-fit for each dilution series, computed as a
ratio of two different sums-of-squares.

warn: A character vector containing any warnings that arose when trying to fit the model
to individual dilution series.

version: A character string containing the version of SuperCurve that produced the fit

Methods

summary(object, ...) Print a summary of the RPPAFit object. At present, this only
reports the function call used to fit the model.

coefficients(object, ...) Extract a named vector (NOT a list) containing the coefficients
alpha, β, and γ of the model.

coef(object, ...) An alias for coefficients.

fitted(object, type=c(”Y”, ”y”, ”X”, ”x”), ...) Extract the fitted values of the model.
This process is more complictaed than it may seem at first, since we are estimating
values on both the X and Y axes. By default, the fitted values are assumed to be the
intensities, Y , which are obtained using either an uppercase or lowercase ’y’ as the
type argument. The fitted log concentrations are returned when type is set to either
uppercase or lowercase ’x’. In the notation used above to describe the model, these
fitted values are given by Xi = X + δi.

residuals(object, type=c(”raw”, ”standardized”, ”linear”), ...) Report the residual
errors. The ’raw’ residuals are defined as the difference between the observed intensities
and the fitted intensities, as computed by the fitted function. The ’standardized’
residuals are obtained by standardizing the raw residuals. The ’linear’ residuals, by
contrast, arise from a reinterpretation of the model. Converting from the observed
intensity scale by a logistic transformation yields

f((Y − α)/β) = γ ∗ (X + δi) = γ ∗ Xi.

To compute the linear residuals, we use the observed Y values on the left side and the
fitted X values on the right side and take the difference.

resid(object, ...) An alias for residuals.

image(x, type=c(”Residuals”, ”StdRes”, ”LinRes”,”X”, ”Y”), ...) The imagemethod
produces a ’geographic’ plot of the residuals or of the fitted values, depending on the
value of the type argument. The implementation reuses code from the image method
for an RPPA object.

hist(x, type=c(”Residuals”, ”StdRes”, ”LinRes”), xlab = NULL, main = NULL, ...)
The hist method produces a histogram of the residuals. The exact form of the resid-
uals being displayed depends on the value of the type argument.

10

plot(x, y, type=c(”cloud”, ”series”, ”individual”), xlab=”Log Concentration”, ylab=”Intensity”, ...)
The plotmethod produces a diagnostic plot of the model fit. The default type, ’cloud’,
simply plots the fitted X values against the observed Y values as a cloud of points
around the jointly estimated sigmoid curve. The ’series’ plot uses different colored
lines to join points belonging to the same dilution series. The ’individual’ plot pro-
duces separate graphs for each dilution series, laying each one alongside the jointly
fitted sigmoid curve.

Author(s)

Kevin R. Coombes <kcoombes@mdanderson.org>

References

See Also

RPPAFit, RPPA, RPPADesign, hist

Examples

path <- system.file("rppaTumorData", package="SuperCurve")

erk2 <- RPPA("ERK2.txt", path=path)

design <- RPPADesign(erk2, grouping="blockSample",

controls=list("neg con", "pos con"))

fit.nls <- RPPAFit(erk2, design, "Mean.Net")

image(fit.nls, measure="Residuals")

image(fit.nls, measure="LinRes")

plot(fit.nls, type="cloud")

fit.q <- RPPAFit(erk2, design, "Mean.Net", method="quantiles")

hist(fit.q, type="StdRes")

plot(fit.q, type="series")

coef(fit.nls)

coef(fit.q)

plot(fitted(fit.q), resid(fit.q))

RPPAFit Fit Dilution Curves to Protein Lysate Series

Description

RPPAFit fits a four-parameter logistic model to the dilution series in a reverse-phase protein
array experiment. Individual sample concentrations are estimated by matching individual
sample dilution series to the overall logistic response for the slide.

11

Usage

RPPAFit(rppa, design, measure, xform=function(x) x,

method = c("pure", "mixed", "quantiles", "rlm"),

ci = FALSE, ignoreNegative = TRUE, bayesian = FALSE,

trace = FALSE, verbose = FALSE, veryVerbose = FALSE,

warnLevel = 0)

Arguments

rppa An RPPA object containing the raw data to be fit.

design A RPPADesign object describing the layout of the array.

measure A character string identifying the column of the raw RPPA data that
should be used to fit to the model.

xform (Experimental) A function that takes a single input vector and returns a
single output vector of the same length. The measure column is trans-
formed using this function before fitting the model. NOT YET IMPLE-
MENTED.

method optional parameter specifying the method for fitting the parameters alpha
and beta. Default method is pure, which simply uses the optimal fit
based on nonlinear least squares. Setting method to mixed uses nls to fit
the three general model parametrs, but uses rlm to fit the sample-specific
parameters. Setting method to quantiles uses the 5th and 95th quantiles
from the raw data. Setting method to rlm tries to refit the values (afer
an appropriate transformation) with a robust linear model.

ci A logical value: if TRUE, then compute 90% confidence intervals on the
concentration estimates.

ignoreNegative

A logical value: if TRUE, then negative values are converted to NA before
fitting the model.

bayesian A logical value: if TRUE, we use bayesian methods to estimate per sample
values of the lower bound alpha.

trace this is passed to nls in the bayesian portion of the routine.

verbose a logical value; if TRUE, the function prints updates while it is fitting the
data.

veryVerbose a logical value; if TRUE, then the function prints voluminous updates as
it is fitting each individual dilution series.

warnLevel used to set the warn option before calling rlm. Since this is wrapped in
a try function, it won’t cause failure but will give us a chance to figure
out which dilution series are failing. Setting warnLevel to two or greater
may change the values returned by the function.

Details

The basic mathematical model is given by

Y = α + β ∗ g(γ ∗ (X + δi)),

12

where Y is the observed intensity and X is the designed dilution step. The heart of the
model is the function g(x) = e

x

1+ex
, which is the inverse of the logistic function

f(x) = log(p/(1 − p)).

By fitting a joint model, we assume that the parameters α, β, and γ are the same for
all dilution series on the array. The real point of the model, however, is to be able to
draw inferences on the δi, which represent the (log) concentrations of the protein present
in different dilution series.

As the first step in fitting the model, we get crude estimates of the parameters α and β
by computing the min and max of the observed intensities Y . We then perform a logistic
transformation, working with the values W = f((Y − α)/β). We then compute an initial
estimate of γ as the median (over all dilution series) of the slope of a robust linear fit to W
as a function of the dilution steps X . Initial estimates of the individual δi are also computed
robustly, conditional on the previously estimated parameters.

The next step depends on which method has been specified for model fitting. If method="pure"
or method="mixed", then we use the non-linear least squares function nls. Conditional on
the current estimates of the δi, we use nls to update the estimates of the other three pa-
rameters. Then, conditional on the updated values of α, β, and γ, we update the estimates
of the δi one dilution series at a time. The update uses nls when method="pure" and uses
rlm when method="mixed".

If method=’quantiles’, then we retain quantile estimates of α and β. In this case, we first
use nls to update the value of γ and then, conditional on that estimate, update the δi.

If method="rlm", we first follow the procedure described for method=’nls’. We follow this
by trying to refit the estimates of α and β using a robust linear model with the rlm function
from the MASS package. This computation is peformed conditionally on the estimates of
gamma and
delta_i, in which case the observed intensities Y are linear in the sigmoid-transformed
dilution steps X .

The bayesian option alters the model by assuming that the baseline level α can be different
for each dilution series. The globally estimated α is used as a strong prior, and the individual
estimates of alpha are shrunk toward the global value. This idea is motivated by the
possibility that background levels might be different on different parts of the reverse phase
protein array.

If the ci argument is set to TRUE, then the function also computes confidence intervals
around the estimates of the log concentration. Since this step can be time-consuming, it is
not performed by default. Moreover, confidence intervals can be computed after the main
model is fit and evaluated, using the getConfidenceInterval function; see its documen-
tation for details on how the intervals are estimated.

Value

This function constructs and returns an object of the RPPAFit class.

Author(s)

Kevin R. Coombes <kcoombes@mdanderson.org>

13

References

KRC

See Also

RPPAFit-class, RPPA, RPPADesign

Examples

path <- system.file("rppaTumorData", package="SuperCurve")

erk2 <- RPPA("ERK2.txt", path=path)

design <- RPPADesign(erk2, grouping="blockSample",

controls=list("neg con", "pos con"))

fit.nls <- RPPAFit(erk2, design, "Mean.Net")

summary(fit.nls)

coef(fit.nls)

rppaTumorData ERK2, GSK3, and JNK expression in tumor samples

Description

This data set contains the expression levels of three proteins: ERK2, GSK3, and JNK in 96
breast tumor samples and controls, measured in dilution series using reverse-phase protein
arrays.

This data set also contains a description of the design of the reverse-phase protein array
used in a set of experiments to measure protein levels in 101 different tumors. Cell lysates
were spotted on the array in six-step dilution series. The layout of the array consisted of a
grid of 4x6 subgrids. Each row of a subgrid contained the dilution series for a single sample,
in decreasing concentration from left to right.

Usage

data(rppaTumorData)

Format

The objects erk2, gsk3, and jnk are objects of the RPPA class. The object tDesign is an
object of the RPPADesign class.

Source

Bryan Hennessey and Gordon Mills

References

KRC

14

