
BMPT-class The BMPT Class

Description

A class for producing BioMarker Power Tables (BMPT), and methods for accessing them.
This class is primarily an implementation detail for the function biomarkerPowerTable.

Usage

BMPT(G, psi, conf, power)
## S4 method for signature 'BMPT':
print(x,...)
## S4 method for signature 'BMPT':
summary(object,...)

Arguments

G A positive integer.
psi A real number between 0 and 1.
conf A real number between 0 and 1.
power A data frame.
x A BMPT object.
object A BMPT object.
... Extra graphical parameters

Creating objects

Although objects can be created using new, the preferred method is to use the constructor
function BMPT. In practice, these objects are most likely to be created using the more general
interface through biomarkerPowerTable.

Slots

G: A positive integer; the number of genes being assessed as potential biomarkers. Statis-
tically, the number of hypotheses being tested.

psi: A real number between 0 and 1; the desired specificity of the test.
conf: A real number between 0 and 1; the confidence level of the results. Can be obtained

by subtracting the family-wise Type I error from 1.
power: A data frame containing the power computations. The rows are indexed by the

sample size and the columns by the sensitivity.

Methods

print(x, ...) Print the power table x.
summary(object, ...) Summarize the power table object.
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Note

See biomarkerPowerTable for examples.

Author(s)

Kevin R. Coombes <kcoombes@mdanderson.org>

See Also

TailRankTest, tailRankPower, biomarkerPowerTable

TailRankTest-class The TailRankTest Class

Description

This is the class representation for the results of a tail-rank test to find biomarkers in a
microarray data set. It includes methods for summarizing and plotting the results of the
test.

Creating objects

Although objects can be created, as usual, using new, the only reliable way to create valid
objects is to use the TailRankTest function. See the description of that function for details
on how the tail-rank test works.

Slots

statistic: a numeric vector containng the tail-rank statistic for each row (gene) in a
microarray data set

direction: a character string representing the direction of the test; can be ”up”, ”down”,
or ”two-sided”

N1: an integer; the numnber of samples in the ”base” or ”healthy” group

N2: an integer; the number of samples in the ”test” or ”cancer” group

specificity: a real number between 0 and 1; the desired specificity used in the test to
estimate a quantile from the ”base” group

tolerance: a real number between 0 and 1; the upper tolerance bound used to estimate
the threshold

confidence: a real number between 0 and 1; the confidence level that there are no false
positives

cutoff: an integer; the maximum expected value of the statistic under the null hypothesis

model: a character string describing the model (binomial or beta-binomial) used to decide
on cutoffs for significance

tau: a numeric vector or NULL; gene-by-gene upper bounds for significance

rho: a numeric vector or NULL; gene-by-gene lower bounds for significance
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Methods

summary(object, ...) Display a summary of the TailRankTest object

hist(x, overlay, ...) Plot a histogram of the statistic in the TailRankTest object x. The
optional argument overlay is a logical flag. If overlay=TRUE, then the histogram is
overlain with a curve representing the null distribution. The default value of overlay
is FALSE.

as.logical(x, ...) Convert the TailRankTest object x into a logical vector, which takes on
a TRUE value whenever the tail-rank statistic exceeds the significance cutoff.

getStatistic(object, ...) Obtain the vector of tail-rank statistics contained in object.

Author(s)

Kevin R. Coombes <kcoombes@mdanderson.org>

See Also

TailRankTest, tailRankPower, biomarkerPowerTable, matrixMean, toleranceBound

Examples

# generate some fake data to use in the example

nr <- 40000

nc <- 110

fake.data <- matrix(rnorm(nr*nc), ncol=nc)

fake.class <- rep(c(TRUE, FALSE), c(40, 70))

# perform the tail-rank test

null.tr <- TailRankTest(fake.data, fake.class)

# get a summary of the results

summary(null.tr)

# plot a histogram of the statistics

hist(null.tr, overlay=TRUE)

# get the actual statistics

stats <- getStatistic(null.tr)

# get a vector that selects the "positive" calls for the test

is.marker <- as.logical(null.tr)

# the following line should evaluate to the number of rows, nr = 40000

sum( is.marker == (stats > null.tr@cutoff) )
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TailRankTest The Tail-Rank Test

Description

Perform a tail-rank test to find candidate biomarkers in a microarray data set.

Usage

TailRankTest(data, classes, specificity = 0.95, tolerance = 0.50, model=c("bb", "betabinomial", "binomial"), confidence = 0.95, direction = "up")

Arguments

data A matrix or data.frame containing numerical measurements on which to
perform the tail-rank test.

classes A logical vector or factor splitting the data into two parts. The length of
this vector should equal the number of columns in the data. The TRUE
portion (or the first level of the factor) represents a ”base” or ”healthy”
group of samples; the other samples are the ”test” or ”cancer” group.

specificity a real number between 0 and 1; the desired specificity used in the test to
estimate a quantile from the ”base” group. This is an optional argument
with default value 0.95.

tolerance a real number between 0 and 1; the upper tolerance bound used to es-
timate the threshold. This is an optional argument with default value
0.90.

model a character string that determines whther significance comes from a bi-
nomial model or a beta-binomial (bb) model.

confidence a real number between 0 and 1; the confidence level that there are no false
positives. This is an optional argument with default value 0.50, which is
equivalent to ignoring the tolerance.

direction a character string representing the direction of the test; can be ”up”,
”down”, or ”two-sided”. The default value is ”up”.

Details

This function computes the tail rank statistic for each gene (viewed as one row of the data
matrix). The data is split into two groups. The first (”base”) group is used to estimate a
tolerance bound (defaults to 50%) on a specific quantile (defaults to 95%) of the distribution
of each gene. The tail-rank statistic is the defined as the number of samples in the second
(”test”) group that lie outside the bound. The test can be applied in the ”up”, ”down”,
or ”two-sided” direction, depending on the kinds of markers being sought. Also computes
the cutoff for significance based on a confidence level that is ”1 - FWER” for a desired
family-wise error rate.

Value

The return value is an object of class TailRankTest.
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Author(s)

Kevin R. Coombes <kcoombes@mdanderson.org>

References

http://bioinformatics.mdanderson.org

See Also

TailRankTest-class, tailRankPower, biomarkerPowerTable, toleranceBound

Examples

# generate some fake data to use in the example

nr <- 40000

nc <- 110

fake.data <- matrix(rnorm(nr*nc), ncol=nc)

fake.class <- rep(c(TRUE, FALSE), c(40, 70))

# perform the tail-rank test

null.tr <- TailRankTest(fake.data, fake.class)

# get a summary of the results

summary(null.tr)

# plot a histogram of the statistics

hist(null.tr, overlay=TRUE)

# get the actual statistics

stats <- getStatistic(null.tr)

# get a vector that selects the "positive" calls for the test

is.marker <- as.logical(null.tr)

# the following line should evaluate to the number of rows, nr = 40000

sum( is.marker == (stats > null.tr@cutoff) )

TailRankTest-methods Methods for TailRankTest objects

Description

This file describes the methods for an object of the class TailRankTest class.
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Usage

## S4 method for signature 'TailRankTest':
summary(object, ...)
## S4 method for signature 'TailRankTest':
hist(x, overlay, ...)
## S4 method for signature 'TailRankTest':
as.logical(x, ...)
## S4 method for signature 'TailRankTest':
getStatistic(object,...)

Arguments

x A TailRankTest object

object A TailRankTest object

overlay An optional logical flag; defaults to FALSE.

... Extra graphical parameters

Value
this-is-escaped-codenormal-bracket34bracket-normal

Returns a logical vector. TRUE values pick out candidate biomarkers where
the tail-rank test statistic exceeds the significance cutoff.

this-is-escaped-codenormal-bracket38bracket-normal

Returns the vector of tail-rank statistics contained in object.
this-is-escaped-codenormal-bracket42bracket-normal

Invisibly returns the TailRankTest object.
this-is-escaped-codenormal-bracket45bracket-normal

Invisibly returns the TailRankTest object.

Author(s)

Kevin R. Coombes <kcoombes@mdanderson.org>

See Also

TailRankTest-class, TailRankTest, tailRankPower

Examples

# generate some fake data to use in the example

nr <- 40000

nc <- 110

fake.data <- matrix(rnorm(nr*nc), ncol=nc)

fake.class <- rep(c(TRUE, FALSE), c(40, 70))

# build an object

null.tr <- TailRankTest(fake.data, fake.class)

# summarize the object
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summary(null.tr)

# plot a histogram

hist(null.tr)

hist(null.tr, breaks=70, col='blue', overlay=TRUE)

# get a logical vector that can select those markers

# identified by the test

selector <- as.logical(null.tr)

BetaBinomial The Beta-Binomial Distribution

Description

Density, distribution function, quantile function, and random generation for the beta-
binomial distribution. A variable with a beta-binomial distribution is distributed as bi-
nomial distribution with parameters N and p, where the probability p of success iteself has
a beta distribution with parameters u and v.

Usage

dbb(x, N, u, v)
pbb(q, N, u, v)
qbb(p, N, u, v)
rbb(n, N, u, v)

Arguments

x vector of qauntiles

q vector of quantiles

p vector of probabilities

n number of observations

N number of trials ( a positive integer)

u first positive parameter of the beta distribution

v second positive parameter of the beta distribution

Details

The beta-binomial distribution with parameters N , u, and v has density given by

choose(N,x) ∗Beta(x+ u,N − x+ v)/Beta(u, v)

for u > 0, v > 0, a positive integer N , and any nonnegative integer x. Although one
can express the integral in closed form using generalized hypergeometric functions, the
implementation of distribution function used here simply relies on the the cumulative sum
of the density.
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The mean and variance of the beta-binomial distribution can be computed explicitly as

mu =
nu

/
u+ v

and

sigma2 =
nuv(n+ u+ v)

(u+ v)2(1 + u+ v)

Value

dbb gives the density, pbb gives the distribution function, qbb gives the quantile function,
and rbb generates random deviates.

Author(s)

Kevin R. Coombes <kcoombes@mdanderson.org>

See Also

dbeta for the beta distribution and dbinom for the binomial distribution.

Examples

# set up parameters

w <- 10

u <- 0.3*w

v <- 0.7*w

N <- 12

# generate random values from the beta-binomial

x <- rbb(1000, N, u, v)

# check that the empirical summary matches the theoretical one

summary(x)

qbb(c(0.25, 0.50, 0.75), N, u, v)

# check that the empirpical histogram matches te theoretical density

hist(x, breaks=seq(-0.5, N + 0.55), prob=TRUE)

lines(0:N, dbb(0:N, N, u,v), type='b')

biomarkerPowerTable Power tables for the tail-rank test

Description

Compute an array of power tables for the tail-rank.test.

Usage

biomarkerPowerTable(G, N1=20, N2=seq(25, 250, by=25), psi = c(0.95, 0.99), conf=0.99, phi = seq(0.10, 0.50, by = 0.05), model="bb")
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Arguments

G An integer; the number of genes being assessed as potential biomarkers.
Statistically, the number of hypotheses being tested.

N1 An integer; the number of ”train” or ”healthy” samples used.

N2 An integer; the number of ”test” or ”cancer” samples used.

psi A real number between 0 and 1; the desired specificity of the test.

conf A real number between 0 and 1; the confidence level of the results. Can
be obtained by subtracting the family-wise Type I error from 1.

phi A real number between 0 and 1; the sensitivity that one would like to be
able to detect, conditional on the specificity.

model A character string that determines whether power and significance are
computed from abinomial or a beta-binomial (bb) model.

Value

Returns a list of objects of the BMPT class. Each item in the list consists of a two-dimensional
table (indexed by the sample sizes N and the sensitivities phi) with scalars recording the
values of G, conf, and psi that were used to generate it.

Note

Default values of the optional arguments (N, psi, conf, phi)are included in the usage
examples.

Author(s)

Kevin R. Coombes <kcoombes@mdanderson.org>

See Also

TailRankTest, tailRankPower, biomarkerPowerTable, matrixMean, toleranceBound

Examples

stuff <- biomarkerPowerTable(10000, 20,

c(10, 20, 50, 100, 250, 500),

c(0.95, 0.99),

c(0.99, 0.95),

seq(0.1, 0.7, by=0.1))

lapply(stuff, summary)
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clinical.info Experimental info for the prostate cancer data set

Description

This data set provides experimental and clinical information about the (partial) prostate
cancer data set included for demonstration purposes as part of the tail.rank.test package.
The experiments were two-color glass microarrays printed at Stanford.

Usage

data(clinical.info)

Format

A data frame with 112 observations on the following 6 variables.

Arrays A factor containing the barcode of the microarray on which the experiment was
performed. Each of the 112 entries should be distinct.

Reference A factor describing the reference sample used in each experiment. This was a
common reference, so the identifiers here are not meaningful.

Sample A factor identifying the test sample in each experiment. These match the codes
published in the original paper.

Status A factor with three levels identifying normal prostate (N), prostate cancer (T), or
lymph node metastasis (L).

Subgroups A factor with five levels: I II III N O. These correspond to the groups found
in the original paper using clustering.

ChipType a factor with levels new or old. At least two different print designs of microar-
rays were used in this experiment; this factor identifies the design.

Source

The data was originally described in the paper by Lapointe et al., and downloaded from
the Stanford Microarray Database http://genome-www5.stanford.edu/.

References

Lapointe J et al. (2004) Gene expression profiling identifies clinically relevant subtypes of
prostate cancer. Proc Natl Acad Sci U S A, 101, 811–816.

See Also

expression.data, gene.info, TailRankTest

Examples

data(clinical.info)

summary(clinical.info)
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expression.data Microarray expression data on prostate cancer

Description

A subset of the microarray data from a study of prostate cancer at Stanford is supplied as
demo data with the tail.rank.test package.

Usage

data(expression.data)

Format

A data frame with 2000 observations on the 112 variables. Each column represent a different
patient sample, as described in the accompanying data.frame called clinical.info.

Details

This data set contains normalized microarray expression data on 2000 randomly selected
genes from a prostate cancer data set. The study was originially described in a publication
by Lapointe et al. The experiments were performed on two-color glass microarrays printed
at Stanford and available from the Stanford Microarray Database. We downloaded the raw
data and preprocessed it. In particular,after background correction and loess normalization,
we computed log ratios between the channels. We then randomly selected 2000 of the 42129
spots to include as demonstration data here.

Source

http://genome-www5.stanford.edu/.

References

Lapointe J et al. (2004) Gene expression profiling identifies clinically relevant subtypes of
prostate cancer. Proc Natl Acad Sci U S A, 101, 811–816.

See Also

clinical.info, gene.info, TailRankTest

Examples

data(expression.data)

summary(expression.data)
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gene.info Gene information for the prostate cancer data set

Description

This data set provides information about the genes included with the (partial) prostate
cancer data set as part of the tail.rank.test package.

Usage

data(gene.info)

Format

A data frame with 2000 observations on the following 6 variables.

ArrayI.Spot a numeric vector; where is this clone spotted on the old arrays

ArrayII.Spot a numeric vector; where is this clone spotted on the new arrays

Clone.ID a factor; the IMAGE clone identifier

Gene.Symbol a factor; the official gene symbol

Cluster.ID a factor; the UniGene cluster number

Accession a factor; the GenBanlk accession number

Source

The data was originally described in the paper by Lapointe et al., and downloaded from
the Stanford Microarray Database http://genome-www5.stanford.edu/. We randomly
selected 2000 of the 42129 spots to include as demonstration data here.

References

Lapointe J et al. (2004) Gene expression profiling identifies clinically relevant subtypes of
prostate cancer. Proc Natl Acad Sci U S A, 101, 811–816.

See Also

clinical.info, expression.data, TailRankTest

Examples

data(gene.info)

summary(gene.info)
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matrixMean Compute row-wise mean and variance using matrix operations

Description

In large data sets, like those arising from microarray or proteomics experiments, it is often
necessary to compute the mean and variance for each row among many thousands. The
computations can be significantly faster if vectorized instead of using the inherent loop in
an apply statement.

Usage

matrixMean(x)
matrixVar(x, xmean)

Arguments

x A matrix or data.frame containing numeric values.

xmean A vector containing the means of the rows in x.

Value

A vector containing a number of entries equal to the number of rows of x, where each entry
is either the mean or the variance of the corresponding row.

Author(s)

Kevin R. Coombes <kcoombes@mdanderson.org>

See Also

apply

Examples

nr <- 10000

nc <- 40

fake.data <- matrix(rnorm(nr*nc), nrow=nr)

fake.class <- rep(c('H', 'C'), each=20)

H.n <- sum(fake.class=='H')

C.n <- sum(fake.class=='C')

H.mean <- matrixMean(fake.data[, fake.class=='H'])

H.var <- matrixVar(fake.data[, fake.class=='H'], H.mean)

C.mean <- matrixMean(fake.data[, fake.class=='C'])

C.var <- matrixVar(fake.data[, fake.class=='C'], C.mean)
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pooled.sd <- sqrt( (H.var*(H.n - 1) + C.var*(C.n - 1))/(H.n + C.n - 2) )

t.statistics <- (C.mean - H.mean)/pooled.sd/sqrt(1/H.n + 1/C.n)

tailRankPower Power of the tail-rank test

Description

Compute the significance level and the power of a tail-rank test.

Usage

tailRankPower(G, N1, N2, psi, phi, conf = 0.95, model=c("bb", "betabinom", "binomial"))
tailRankCutoff(G, N1, N2, psi, conf, model=c("bb", "betabinom", "binomial"), method=c('approx', 'exact'))

Arguments

G An integer; the number of genes being assessed as potnetial biomarkers.
Statistically, the number of hypotheses being tested.

N1 An integer; the number of ”train” or ”healthy” samples used.

N2 An integer; the number of ”test” or ”cancer” samples used.

psi A real number between 0 and 1; the desired specificity of the test.

phi A real number between 0 and 1; the sensitivity that one would like to be
able to detect, conditional on the specificity.

conf A real number between 0 and 1; the confidence level of the results. Can
be obtained by subtracting the family-wise Type I error from 1.

model A character string that determines whether significance and power are
computed based on a binomial or a beta-binomial (bb) model.

method A character string; either ”exact” or ”approx”. The deafult is to use a
Bonferroni approximation.

Details

A power estimate for the tail-rank test can be obtained as follows. First, let X Binom(N,p)
denote a binomial random variable. Under the null hypotheis that cancer is not different
from normal, we let p = 1− ψ be the expected proportion of successes in a test of whether
the value exceeds the psi-th quantile. Now let

α = P (X > x, |N, p)

be one such binomial measurement. When we make G independent binomial measurements,
we take

conf = P (allGoftheX ′s ≤ x|N, p).
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(In our paper on the tail-rank statistic, we write everything in terms of γ = 1 − conf .)
Then we have

conf = P (X ≤ x|N, p)G = (1− alpha)G.

Using a Bonferroni-like approximation, we can take

conf = 1− α ∗G.

Solving for α, we find that
α = (1− conf)/G.

So, the cutoff that ensures that in multiple experiments, each looking at G genes in N
samples, we have confidence level conf (or significance level γ = 1 − conf) of no false
positives is computed by the function tailRankCutoff.

The final point to note is that the quantiles are also defined in terms of q = 1−α, so there
are lots of disfiguring ”1’s” in the implementation.

Now we set M to be the significance cutoff using the procedure detailed above. A gene with
sensitivity φ gets detected if the observed number of cases above the threshold is greater
than or equal to M . The tailRankPower function implements formula (1.3) of our paper
on the tail-rank test.

Value

tailRankCutoff returns an integer that is the maximum expected value of the tail rank
statistic under the null hypothesis.

tailRankPower returns a real numbe between 0 and 1 that is the power of the tail-rank
test to detect a marker with true sensitivity equal to phi.

Author(s)

Kevin R. Coombes <kcoombes@mdanderson.org>

See Also

TailRankTest, tailRankPower, biomarkerPowerTable, matrixMean, toleranceBound

Examples

psi.0 <- 0.99

confide <- rev(c(0.8, 0.95, 0.99))

nh <- 20

ng <- c(100, 1000, 10000, 100000)

ns <- c(10, 20, 50, 100, 250, 500)

formal.cut <- array(0, c(length(ns), length(ng), length(confide)))

for (i in 1:length(ng)) {

for (j in 1:length(ns)) {

formal.cut[j, i, ] <- tailRankCutoff(ng[i], nh, ns[j], psi.0, confide)

}

}

dimnames(formal.cut) <- list(ns, ng, confide)

formal.cut
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phi <- seq(0.1, 0.7, by=0.1)

N <- c(10, 20, 50, 100, 250, 500)

pows <- matrix(0, ncol=length(phi), nrow=length(N))

for (ph in 1:length(phi)) {

pows[, ph] <- tailRankPower(10000, nh, N, 0.95, phi[ph], 0.9)

}

pows <- data.frame(pows)

dimnames(pows) <- list(as.character(N), as.character(round(100*phi)))

pows

toleranceBound Upper tolerance bounds on normal quantiles

Description

The function toleranceBound computes theoretical upper tolerance bounds on the quantiles
of the standard normal distribution. These can be used to produce reliable data-driven
estimates of the quantiles in any normal distribution.

Usage

toleranceBound(psi, gamma, N)

Arguments

psi A real number between 0 and 1 giving the desired quantile
gamma A real number between 0 and 1 giving the desired tolerance bound
N An integer giving the number of observations used to estimate the quantile

Details

Suppose that we collect N observations from a normal distribution with unknown mean
and variance, and wish to estimate the 95th percentile of the distribution. A simple point
estimate is given by τ = X̄ +1.68s. However, only the mean of the distribution is less than
this value 95% of the time. When N = 40, for example, almost half of the time (43.5%),
fewer than 95% of the observed values will be less than τ . This problem is addressed by
constructing a statistical tolerance interval (more precisely, a one-sided tolerance bound)
that contains a given fraction, ψ, of the population with a given confidence level, γ [Hahn
and Meeker, 1991]. With enough samples, one can obtain distribution-free tolerance bounds
[op. cit., Chapter 5]. For instance, one can use bootstrap or jackknife methods to estimate
these bounds empirically.

Here, however, we assume that the measurements are normally distributed. We let X̄ denote
the sample mean and let s denote the sample standard deviation. The upper tolerance
bound that, 100γ% of the time, exceeds 100ψ% of G values from a normal distribution is
approximated by XU = X̄ + kγ,ψs, where

kγ,ψ =
zψ +

√
z2
ψ − ab

a
,
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a = 1−
z2
1−γ

2N − 2
,

b = z2
ψ −

z2
1−γ

N
,

and, for any π, zπ is the critical value of the normal distribution that is exceeded with
probability π [Natrella, 1963].

Value

Returns the value of kγ,ψ with the property that the ψth quantile will be less than the
estimate XU = X̄ + kγ,ψs (based on N data points) at least 100γ% of the time.

Note

Lower tolerance bounds on quantiles with psi less than one-half can be obtained as XU =
X̄ − kγ,1−ψs,

Author(s)

Kevin R. Coombes <kcoombes@mdanderson.org>

References

Natrella, M.G. (1963) Experimental Statistics. NBS Handbook 91, National Bureau of
Standards, Washington DC.

Hahn, G.J. and Meeker, W.Q. (1991) Statistical Intervals: A Guide for Practitioners. John
Wiley and Sons, Inc., New York.

Examples

N <- 50

x <- rnorm(N)

tolerance <- 0.90

quant <- 0.95

tolerance.factor <- toleranceBound(quant, tolerance, N)

# upper 90

tau <- mean(x) + sd(x)*tolerance.factor

# lower 90

rho <- mean(x) - sd(x)*tolerance.factor

# behavior of the tolerance bound as N increases

nn <- 10:100

plot(nn, toleranceBound(quant, tolerance, nn))

# behavior of the bound as the tolerance varies

xx <- seq(0.5, 0.99, by=0.01)

plot(xx, toleranceBound(quant, xx, N))

17


	BMPT-class
	TailRankTest-class
	TailRankTest
	TailRankTest-methods
	BetaBinomial
	biomarkerPowerTable
	clinical.info
	expression.data
	gene.info
	matrixMean
	tailRankPower
	toleranceBound

