matrixMean {TailRank} | R Documentation |
In large data sets, like those arising from microarray or proteomics
experiments, it is often necessary to compute the mean and variance
for each row among many thousands. The computations can be
significantly faster if vectorized instead of using the inherent loop
in an apply
statement.
matrixMean(x) matrixVar(x, xmean)
x |
A matrix or data.frame containing numeric values. |
xmean |
A vector containing the means of the rows in x . |
A vector containing a number of entries equal to the number of rows of
x
, where each entry is either the mean or the variance of the
corresponding row.
Kevin R. Coombes <kcoombes@mdanderson.org>
nr <- 10000 nc <- 40 fake.data <- matrix(rnorm(nr*nc), nrow=nr) fake.class <- rep(c('H', 'C'), each=20) H.n <- sum(fake.class=='H') C.n <- sum(fake.class=='C') H.mean <- matrixMean(fake.data[, fake.class=='H']) H.var <- matrixVar(fake.data[, fake.class=='H'], H.mean) C.mean <- matrixMean(fake.data[, fake.class=='C']) C.var <- matrixVar(fake.data[, fake.class=='C'], C.mean) pooled.sd <- sqrt( (H.var*(H.n - 1) + C.var*(C.n - 1))/(H.n + C.n - 2) ) t.statistics <- (C.mean - H.mean)/pooled.sd/sqrt(1/H.n + 1/C.n)