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Development of an Omics Predictor

Generate raw data from 
selected specimens

Screen out 
unsuitable 

data or 
specimens

Raw data processing:  normalization, 
calibration, summary measures

Identify features (e.g., genes, proteins) relevant to a 
clinical or pathological distinction

Apply algorithm to develop a predictor 
or score; INTERNAL VALIDATION

EXTERNAL VALIDATION on
INDEPENDENT set of specimens/data

Training 
data sets



Training Set (specimens/data)
• Where did the specimens come from?

– Was it a single source, or multiple?
– Uniform sample collection, handling and preservation?

• Were the omics assays conducted in one or multiple 
labs, in one or multiple assay batches?

• Is there potential confounding of any of the above 
factors with the outcome that you want to predict?
– Do patients accrued at different clinical sites have different 

stage distribution, or receive different treatments?
– Are “responder” specimens obtained and/or assayed at 

site A but “non-responder” specimens obtained and/or 
assayed at site B?
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“Raw” data → “Processed” data
• Preprocessing

– Calibration/normalization
– Background corrections

• Summary measures
– Example:  Gene signal (probe set summaries from 

Affymetrix chips)

• Further normalization or standardization
– Centering
– Scaling
– Centered & scaled

• All steps must be documented!
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Affymetrix GeneChip Example

• One probe type per “cell”
• Typical probe = 25-mer oligo
• 11-20 PM:MM pairs per probe set
• One gene summary per probe set 

(MAS 5.0, RMA, etc.)
• Further normalization or 

standardization

Gene 
sequence
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Identify “Informative Features”

• Which genes are expressed at different levels 
between the two groups (e.g., favorable vs. 
unfavorable; responder vs. non-responder)?

• Potential for many false positives
– Performing 10,000 statistical tests, each at level 

0.05 will generate 500 false positives when there 
are truly no informative features

• Might be many different sets of equally 
informative features (e.g., co-regulated genes)
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Predictor or Risk Score

• Link informative feature measurements to 
clinical outcome or characteristic

• Derive mathematical function that associates 
a specimen with a class or assigns a 
continuous score based on inputted feature 
measurements

• Most scores eventually subject to cut-points 
for clinical decision-making
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Classification Methods
• Linear Predictor (for 2 classes)

L(x) = w1x1 + w2x2 + . . . + wfxf
is a weighted combination of important features to 
which a classification threshold is applied
– Examples:  Linear discriminant analysis, compound 

covariate predictor, weighted voting method, support 
vector machines with inner product kernel, perceptrons, 
naïve Bayes MVN mixture classifier

– Features can be “metagenes”
• Distance-based

– To which prototype pattern of informative features does 
the new pattern look most similar?

– Examples:  Nearest neighbor, nearest centroid
• Many more complex methods: Decision trees, 

random forests, completely stochastic or Bayesian 
model averaging
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Example Clinical Predictors

70 genes 
Prognostic/predictive?

21 genes
Prognostic/predictive?

Risk = 7%
95% CI:
(4%,10%)

Risk = 14%
95% CI:
(8%,20%)

Risk = 31%
95% CI:
(24%,37%)

< 18 18-30 > 30

MAMMAPRINT:
Outcome class predictor

ONCOTYPE DX:
Risk score with cut-points

Buyse et al, JNCI, 2006
Figure 4 from Paik et al, 
N Engl J Med, 2004
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Classification: Avoiding Pitfalls

• When number of potential features is much larger 
than the number of cases, can always fit a classifier 
to have 100% prediction accuracy on data set used to 
build it
– Can always perfectly fit a straight line (two-dimensional) 

between two points
• Estimating accuracy by “plugging in” data used to 

build a classifier results in highly biased estimates of 
prediction accuracy (re-substitution estimate)

• Internal and external validation of predictor are 
essential
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Validation Approaches

• Internal:  within-sample validation
– Cross-validation

(leave-one-out, split-sample, k-fold, etc.)

– Bootstrap and other resampling methods
– See Molinaro et al (Bioinformatics 2005) for 

comparison of methods

• External:  independent-sample 
validation
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Leave-one-out cross-validation (LOOCV)

Specimen j Specimens
1, 2, . . ., j-1, j+1, . . ., N

Build classifier (feature selection,
model parameter estimation, etc.)

“Plug-in” Specimen j and
record predicted class

Repeat for each j

Set
aside

ALL steps, including feature selection, must be 
included in the cross-validation loop
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Limitations of Within-Sample Validation 

• Frequently performed incorrectly
– Improper cross-validation (e.g., not including feature 

selection)
– Special statistical inference procedures required (Lusa et 

al, Statistics in Medicine 2007; Jiang et al, Stat Appl
Genetics and Mol Biol 2008)

• Large variance in estimated accuracy and effect sizes
• Doesn’t protect against biases due to selective 

inclusion/exclusion of samples
• Built-in biases? (e.g., lab batch, specimen handling, 

etc.)
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Dangers of selective inclusion/exclusion of cases

Delete the points that don’t 
fit the line

Now even properly performed 
internal validation will suggest 
good model performance, but 
that is the wrong answer!
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Corrupted Validation Data
• Suppose all model building steps are completely 

sound

• Still, results can be misleading if the validation
data are corrupted
– Test model on validation data with corrupted 

specimen labels (e.g., responder/nonresponder) or 
outcome variables (e.g., drug sensitivity measure)

– Test model on validation data with corrupted omics
(e.g., gene expression profile) data

– Selective exclusion of validation specimens that don’t 
fit the model developed on the training set
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Information Leak from Validation Data 
Into Model Building Process

• Identify genes that are good predictors in the 
validation set

• Force those genes into the “informative set” of 
genes obtained from the training data
– Cluster the validation data using the gene list that 

contains those found to be informative on the training 
data plus the forced genes from the validation data

– Build the model with genes forced into it

• BIASED VALIDATION!

18



Combining training and validation data

• Build model on training set only

• Present performance results for that model on 
the full set of combined training and test sets?

• This is a hybrid between re-substitution 
method (invalid) and correct validation, and 
the overall result is HIGHLY BIASED!
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Questions to Ask
• What data sets were the “starting points” for 

both the training and validation sets?
– Inclusion/exclusion criteria?

– Are the data accurate for both the training and 
validation sets (going back to original sources)?

– Plugging data provided into computer code is a 
good start, but it does not confirm validity of data 
or assure reported prediction performance is free 
of biases
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Questions to Ask
• If there was a fully specified predictor building 

algorithm, can the predictor be re-derived 
using the training data only?

• If there was no fixed predictor building 
algorithm, is there documentation of a strict
blinded validation?
– Split sample (internal) validation

– Independent (external) validation
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Questions to Ask
• Are results presented with appropriate 

separation of training and validation data?

• Are the best results of many attempts 
presented, or was a single predictor 
evaluated?

• Does the predictor always produce the same 
result given the same data?
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Questions to Ask

• Is the predictor presented (and 
reportedly validated) really the one 
being used in the trial?
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