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We have systematically attempted to use in vitro drug sensitivity data coupled
with Affymetrix microarray data to develop genomic signatures that predict
sensitivity to individual chemotherapeutic agents. By randomly selecting cell
lines, we have found that signatures developed using the most sensitive and most
resistant NCI60 cell lines do not perform better than chance on patient data.
Thus, our result fails to reproduce a previous report in Nature Medicine. We
discuss some of the reasons for this failure, and discuss methods for improving
the reproducibility of analyses of large data sets.

Predicting whether a tumor will respond well to therapy remains one of the biggest
opportunities in clinical oncology, allowing us to realize the promise of personalized treatment
with improved outcomes and decreased toxicity. Recently, Potti and colleagues 1 published
an article in Nature Medicine that appeared to offer a significant breakthrough on this front.
Using publicly available data, they assembled microarray profiles from the NCI60 cancer cell
lines with known in vitro sensitivity or resistance to a particular drug. They then used these
profiles to predict in vivo chemotherapeutic response. They reported good success using this
approach with seven drugs. Unfortunately, our group has been unable to reproduce their
findings. The purpose of this paper is to examine the causes of this apparent irreproducibility,
and to demonstrate a method for reporting a reproducible analysis of similar data.

Potti and colleagues broadly outlined a plausible strategy for trying to discover and
validate genomic signatures of drug sensitivity. Conceptually, the plan is straightforward:

1. Cell line selection: Choose cell lines, using dose response data, to represent the
extremes of sensitivity and resistance.

2. Feature selection: Select genes to include in a model, using microarray profiles of
the chosen cell lines, by ranking the genes based on univariate t-tests between sensitive
and resistant cell lines.

3. Model training: Train a probit regression model for predicting sensitivity on the
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chosen cell lines, using principal components of the selected features as predictors.

4. Model testing: Test the model on an independent data set to determine if the cell
line data can predict clinical outcomes.

The challenge is to report the implementation of these steps in sufficient detail that an
independent reader can reproduce—or discover flaws in—the reported analysis. Potti and
colleagues described their methods in words (rather than equations or computer code) in
the published paper and in an online supplement. At each step, when we could not repro-
duce their results, we were uncertain if we had correctly interpreted their descriptions. We
repeatedly contacted the authors and obtained clarification, but remained unable to repro-
duce their results. For our own analysis, we have made every effort to provide unambiguous
descriptions. In addition, in case our written descriptions fail, the full source code for each
analysis step is available so that other researchers can reproduce and evaluate our methods
carefully—and, we hope, improve upon them.

Ultimately, we believe that the methods we used are a reasonable interpretation of
the ones presented by Potti and colleagues. The failure of these methods suggests that the
approach used to interpret genomic signatures based only on the NCI60 cell lines cannot be
successfully applied in this fashion to predict patient response to chemotherapy.

RESULTS

The GI50 values of their sensitive and resistant cell lines overlap (cell line selec-
tion).

In their original paper, Potti and colleagues did not report which cell lines were used
to define individual drug sensitivity signatures. But, in response to inquiries, they kindly
posted additional information on their web site. For docetaxel, they found seven sensitive
cell lines:

HL-60(TB), HOP-62, HT29, NCI-H522, SF-539, SK-MEL-2, SK-MEL-5

and seven resistant cell lines:

786-0, CAKI-1, EKVX, IGROV1, OVCAR-4, SN12C, TK-10
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We have used these cell lines with their software to reproduce the docetaxel heatmap in
their paper (Supplementary Report SR9), confirming that these are the cell lines used in
their analysis.

Here, we are trying to understand how they chose those cell lines, and whether the
method is reproducible. At the Nature Medicine web site∗, Potti and colleagues posted
Supplementary Methods (P-SM). In that document, they say: “[W]e chose cell lines . . . that
would represent the extremes of sensitivity to a given chemotherapeutic agent (mean GI50
±1 SD). . .. [T]he log transformed TGI and LC50 dose . . . was then correlated with the
respective GI50 data. . .. Cell lines with low GI50 . . . also needed to have a low LC50 and
TGI. . ..”

To apply this description, we downloaded the dose response data from the DTP web site
(see Methods and Supplementary Report SR1). The web site contains data on three sets of
dose response experiments for docetaxel. These experiments differ based on the (maximum)
starting concentration used, which was either 10−4 M, 10−6 M, or 10−7 M. For each of the
three starting concentrations, we began with cell lines whose GI50 values were 1 SD above or
1 SD below the mean. We only kept cell lines for which the LC50 and TGI values were both
above (resp., below) their median levels whenever the GI50 value was above (resp., below)
the mean ±1 SD cutoff. Using this interpretation, we found no cell lines that were resistant
to docetaxel and only one cell line (COLO 205) that was sensitive. If we weakened the criteria
to allow the inclusion of cell lines for which the TGI or LC50 was equal to its median value,
then more cell lines were found but none of the experiments produced lists of cell lines that
matched the ones reported by Potti and colleagues (Supplementary Report SR3).

To improve upon this result, we looked more carefully at the drug response data. The
two lower starting concentrations provided no useful information about the LC50 values of
the cell lines. Moreover, 41 of the 59 cell lines tested have LC50 values greater than the
highest starting concentration of 10−4 M (SR3). As a result, we decided to ignore the LC50
data for docetaxel. Similarly, the lower starting concentration experiments were not useful
for estimating TGI (SR3). So, we used the experiment with starting concentration 10−4 M to
estimate TGI values for docetaxel. Both of the lower concentration experiments appeared to
give reasonable (although not perfectly congruent) estimates of GI50 values for the response
of cell lines to docetaxel. We averaged these estimates to provide pooled estimates of GI50.

Although the GI50 values appeared to be normally distributed, the TGI values were
highly skewed. Consequently, we chose to work with distribution-free descriptions (i.e., me-

∗http://www.nature.com/nm/journal/v12/n11/extref/nm1491-S9.pdf

3



●

●
●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●
● ●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

6 7 8 9

4
5

6
7

8

NLOG GI50

N
LO

G
 T

G
I

●

●

●

●

●

●

●

● ●●
●

● ●●

●

●

●

Sensitive
Resistant
Sensitive (Potti)
Resistant (Potti)
Other Cell Lines

Sensitivity or resistance to docetaxel

Figure 1: Scatter plot of the negative base-ten logarithm (NLOG) of the GI50 and TGI
values for 59 cell lines. The observed values were separated into thirds. Genes selected as
sensitive (resp., resistant) were in the highest (resp., lowest) NLOG concentration third on
both measures.
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dian and quantile) rather than parametric descriptions (e.g., mean and standard deviation).
Specifically, we divided both the GI50 data and the TGI into thirds (Figure 1). Cell lines
that were in the highest third for both negative base-ten log (NLOG) TGI and NLOG GI50
concentrations were called sensitive, and cell lines that were in the lowest third for both
NLOG TGI and NLOG GI50 were called resistant. Using these definitions, we found that
eight cell lines were sensitive:

COLO 205, HCC-2998, HL-60(TB), HT29, MDA-MB-435, NCI-H522, RPMI-8226, SF-539

and seven cell lines were resistant:

786-0, ACHN, CAKI-1, EKVX, IGROV1, OVCAR-4, SF-268

We found similar results (12 or 13 of the 15 selected lines) using the unpooled GI50 values
from the experiment with starting concentration 10−6 M or 10−7 M to select cell lines.

While our approach generates lists of resistant and sensitive cell lines that are similar
in size to the ones selected by Potti’s group, we have poor agreement with the actual lines
they selected, with only 4 or 5 of 7 overlapping. In Figure 1, the NCI60 cell lines are plotted
according to our TGI and GI50 values. Our cell lines are indicated in color and the Potti
group’s cell lines are circled. Two of the lines they called sensitive have smaller NLOG GI50
values than half of the lines they called resistant. In addition, the most sensitive line (COLO
205), based on both GI50 and TGI scores, was not included in their set.

Differentially expressed probe sets vary depending on the microarray data set
(feature selection).

Novartis ran each cell line on three Affymetrix U95Av2 microarrays (see Methods).
These three sets of replicates can be grouped into series “A”, “B”, and “C” using the labeling
supplied. Examining the data posted on the Duke web site, we determined that Potti and
colleagues selected features from the A series of Novartis experiments (Supplementary Report
SR2), where “a variance fixed t-test was used to calculate significance” (P-SM).

We selected genes that were differentially expressed between the sensitive and resistant
cell lines that we chose in the previous section. We used two-sample t-tests to analyze the
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A, B, and C series, both separately and jointly. In the joint analysis, we first averaged the
replicates and then performed a t-test on the averages. For every analysis, a beta-uniform
mixture (BUM) model of the p-values2 showed evidence of substantial differences in gene
expression between the docetaxel-sensitive cell lines and the docetaxel-resistant cell lines. In
their published analysis, Potti and colleagues selected the 50 most significant genes to use
in model building. The number of genes they selected varied for different chemotherapeutic
agents, and criteria for choosing these numbers were not given. Following their lead, we
selected the 50 most significant genes from each analysis.

The sets of top 50 genes varied from data set to data set; the numbers of genes in the
intersections are listed in Table 1. Using the BUM model to estimate the false discovery
rate (FDR)2,3, we found that the 50 genes from the series A experiments correspond to
FDR = 4.0%; series B, FDR = 13.0%; series C, FDR = 28.4%; and the average analysis,
FDR = 7.9%. As a result, we decided to use both the list of 50 genes selected from the
average data and the 50 from Series A for our further analysis.

We repeated this analysis using the cell lines chosen by Potti and colleagues. The vari-
ability of the gene lists was comparable (Supplementary Report SR4). Potti and colleagues
also provided lists of the features selected for each drug treatment, indexed by Affymetrix
probe set ID and annotated with gene names, symbols, and descriptions. These lists are
available on the Nature Medicine web site as Supplementary Table 1. The lists as initially
reported are wrong, because of an off-by-one indexing error that we discovered (Supplemen-
tary Report SR9). After correcting for this error, their list of genes for docetaxel has 29 genes
in common with the Series A list we derived using the cell lines that they chose, and 33 of
their 50 reported genes have small enough p-values that minor changes in the normalization
procedure could account for the difference. The remaining 17 genes, however, have large
p-values in our analysis, and we cannot explain how they were selected.

The first principal component suffices to separate resistant from sensitive cell
lines (model training).

In P-SM, Potti and colleagues wrote: “The individual drug sensitivity and resistance
data from the selected solid tumor NCI60 cell lines was then used in a supervised analysis
using binary regression methodologies . . . to develop models predictive of chemotherapeutic
response. . .. Each signature summarizes its constituent genes as a single expression profile,
and is here derived as the top principal component of that set of genes.”

We used singular value decomposition (SVD) to perform principal component analysis
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(PCA) on the cell lines and features that we selected, using all replicates in the Novartis
data. We used an implementation of the algorithm in version 1.3 of the ClassComparison

package that is part of a suite of tools for Object-Oriented Microarray and Proteomic Analysis
(OOMPA) in R, which we developed and which is available from our web site†. Based on
a plot of the first two principal components (Figure 2), the first principal component by
itself is more than adequate to completely separate the resistant from the sensitive lines.
This finding is consistent with the description of the methods in the paper by Potti and
colleagues.

We then built a binary probit prediction model using all components except the first to
try to predict sensitivity in the selected NCI60 cell lines. None of the higher components were
statistically significant; the smallest individual p-value was 0.292 (Supplementary Report
SR5). We then built another predictive model, including the first principal component, and
using the Akaike Information Criterion (AIC) in a step-wise procedure to select the best
model incorporating multiple principal components. Only the first principal component was
included in the model (SR5). We repeated this entire analysis using features selected from
the Novartis Series A experiments, and also did the same thing using the cell lines chosen
by Potti and colleagues. The results were comparable (SR5).

The predictions do not validate on a clinical breast cancer data set (model test-
ing).

Potti and colleagues wrote: “Chang and colleagues have published expression . . . data
and objective response information to docetaxel. Of the 24 patients reported in their study,
there were 13 patients with docetaxel sensitivity and 11 patients with resistance. This
dataset was used to validate the in vitro predictive model and generate a complementary
in vivo model. . .. Gene selection and identification is based on the training data, and then
metagene values are computed using the principal components of the training data and
additional cell line or tumor expression data. Bayesian fitting of binary probit regression
models to the training data then permits an assessment of the relevance of the metagene
signatures” (P-SM; emphasis added).

We downloaded the Chang breast cancer data set (GSE349 and GSE350) from the Gene
Expression Omnibus (GEO) web site (Supplementary Report SR6). Interestingly, the Chang
paper4 states that there were 13 resistant and 11 sensitive patients (which is the opposite of
the numbers used by Potti). Moreover, the data in GEO seems to contain 14 resistant and
10 sensitive samples. Susan Hilsenbeck (personal communication) has informed us that one

†http://bioinformatics.mdanderson.org/software.html
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sample (#377, GSM4913) was misidentified as resistant when uploaded to GEO, confirming
the numbers from the original article.

The Chang data was originally processed using DNA Chip Analyzer (dChip) using the
PM −MM algorithm developed by Li and Wong.5 We processed the CEL files ourselves,
using dchip2006.exe and the PM -only model. We performed quantile normalization to
map the feature intensity distributions in the Chang data onto the same quantiles used to
normalize the NCI60 cell line data. We then projected the breast tumor samples from the
Chang study onto the principal component (PC) space defined by the docetaxel sensitive and
resistant NCI60 cell lines (Figure 2). The tumor samples were projected into the center of
the PC space (largely intermediate between the sensitive and resistant cell lines). Moreover,
the sensitive tumor samples almost completely overlap the resistant tumor samples, showing
no signs of separation and being effectively randomly distributed. This figure suggested that
no prediction method based on the first (or even the first and second) principal component
from the cell line data could possibly make accurate predictions on the breast tumor data.

To test this, we applied the predictive probit binomial models based on (i) just the first
and (ii) the optimal set of principal components chosen from the NCI60 data using AIC.
Both results were the same, and were not very convincing (Table 2). We performed similar
analyses using models based on all combinations of (a) the cell lines we chose or the cell
lines Potti and colleagues chose; (b) features selected from the Novartis A arrays or from
the averaged Novartis data; and (c) using our quantifications of the Chang CEL files or the
posted quantifications from GEO. None of these eight variants produced results comparable
to the ones reported in the paper by Potti and colleagues (Supplementary Report SR7).

The predictions are no better than those made using random cell lines.

At the heart of the paper by Potti and colleagues is the hypothesis that selecting
cell lines that represent the extremes of sensitivity and resistance by multiple measures
should make it possible to discover genomic signatures of chemotherapeutic response. This
hypothesis can be tested by selecting the same number of cell lines randomly, arbitrarily
labeling them as “sensitive” or “resistant”, and then applying the same methods to discover
and validate signatures.

We performed this random cell line selection 200 times, selecting 7 cell lines to call
resistant and 7 to call sensitive. The results are displayed in Figure 3, which is analogous
to the usual plot of an ROC curve. We can summarize the performance of models derived
from each set of random cell lines using the average of the two proportions, which can be
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Figure 3: Prediction results using random cell lines to represent “sensitive” or “resistant”
cases. True outcomes (Resp= responder, NR=non-responder) are known for the Chang
breast cancer samples. Using the cell lines chosen by Potti and colleagues, we marked the
performance of the model based on features from the Novartis A data (red square), features
from the average Novartis data (green square), and the features they reported (blue square).
The indicators of actual performance are concentrated in the lower left of the figure.
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interpreted either as the expected accuracy or as the area under an ROC curve (AUC) on
which we have only observed one point. The fraction of random data sets with larger AUC
values provides an empirical p-value for the observed performance. In the case of features
selected using the Novartis A data on the cell lines chosen by Potti and colleagues, this
p-value is 0.74 (Supplementary Report SR8).

Their software may use information from the test set while training the model.

We were puzzled by the disparities between our findings and those reported by Potti and
colleagues. We were also concerned by the phrase emphasized above, which suggested that
information from“additional cell line or tumor expression data”was used during training. To
understand what this meant, we reviewed the MATLAB source code from the software that
Potti and colleagues posted on the Duke web site. This code performed SVD on the training
and test data combined. The Duke group also provided a newer experimental version of the
code, which performed SVD on the training data alone, as we did above.

We first ran both versions of their software using just their reported cell line training sets
for the 7 drugs studied in their original paper. The results were the same for both versions of
the software. We perfectly matched 6 of the published heatmaps; the exception was cytoxan
which we could not match at all. We also perfectly matched the list of reported features (after
correcting for the off-by-one error) for three drugs (5-fluorouracil, topotecan, and etoposide)
and matched 75/80 for adriamycin, 28/35 for paclitaxel, and 31/50 for docetaxel (SR9).
We cannot explain the disparities in the feature lists, since the accompanying heatmaps are
identical. Of the 19 unexplained genes for docetaxel that appear on their reported list, 14
are listed as useful discriminators in the supplement to the paper by Chang and colleagues.4

We then tried to reproduce their predictions for the Chang test data using their selected
Novartis A cell line data for training (Figure 4). The top panels of the figure show the two
principal components that are most significant in a model built to separate sensitive (blue)
from resistant (red) cell lines. The bottom panels show the predicted probability of resistance
on the test data.

When only the training data is used in the SVD (experimental software; right panels),
the first principal component (Factor 1, y-axis) is the most important factor for separating
the two groups. However, the predictions on the test data for this model put all the samples
in the same category, providing no power to separate responders from non-responders. These
findings are consistent with our own analysis presented above.
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By contrast, when both training and test data are used in the SVD (original software;
left panels), the second principal component (Factor 2, y-axis) becomes the most important.
Using this model, the predictions appear to separate the test samples. Performing the SVD
on the joint data set has produced a drastically different model. The model apparently
changes because information from the test samples “leaks” into the model during fitting.

DISCUSSION

Niels Bohr reportedly quipped that “Prediction is hard, especially when it involves the fu-
ture.” In the realm of medical applications of microarrays, we believe that he has a valid
point. Developing a predictive model from one microarray study and applying it successfully
to an independent microarray study is very difficult. The difficulty arises, in part, because
the analysis is inherently complex, requiring a complicated sequence of steps with numerous
choices of algorithms and parameters at each step. These analyses are also extremely fragile,
in the sense that a single error at any one of the steps can invalidate the conclusions. Of
course, complexity by itself need not lead to fragility. Living cells, for instance, are highly
complex, but they manage to respond succesfully to rapidly changing environmental condi-
tions. Cells and organisms rely on feedback loops, alternate pathways, and homeostasis to
achieve a level of robustness that appears to be lacking, as yet, in the analysis of large data
sets.

In order to provide feedback on analyses, published results must be reviewed with an eye
toward their reproducibility. In the present instance, we found that relying on the written
description of the methods, either in the published paper or in the online Supplementary
Methods, compounded the difficulties. When we could not reproduce the published results,
it was initially unclear if those results were wrong or if we were simply misinterpreting or
misunderstanding the descriptions of the methods. We repeatedly contacted the authors and
obtained clarification, but were still unable to reproduce their results.

For our own analysis, we have taken what is, perhaps, an extreme view on reproducibil-
ity. Our analysis was performed using Sweave, a package that allows analysts to combine the
source code (in R, a statistical programming enviroment6) and the documentation (in LaTeX,
a software tool for text preparation7) in the same file. Our source code is freely available;
anyone can download it and run it. Moreover, running the code not only reproduces the
results; it also generates the figures, tables, and a complete PDF version of this manuscript.
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Figure 4: PCA plots for docetaxel training data (top; blue = sensitive, red = resistant)
and prediction probabilities on test data (bottom). Panels on the left are from the original
version of the software, which performs SVD on the combined training and test data. Panels
on the right are from an experimental version of the software, which performs SVD only on
the training data.
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The results reported in the paper are backed by supplementary reports prepared in Sweave,
amounting to 9 PDF files containing about 127 pages of text, code, figures, and tables. The
concept of “reproducible research”, which advocates that researchers provide complete source
code in this way, is beginning to attract attention in many areas of science.8–12 We have be-
come converts to this philosophy, and see this article as a concrete demonstration that it is
possible to provide a complete, fully detailed analysis of a complex microarray study. There
have been others.13,14

Because Potti and colleagues were not only very responsive to our questions but also
made the source code of their analysis available, we were ultimately able to detect what we
believe to be flaws in their analysis that may partially explain the disparity between their
findings and ours. We suspect that they may have used the original version of the software,
which performed PCA using SVD on the combined training and test data. If this is the case,
then the independence of the test set was not maintained. The fact that using the test data
in this way changes the model is illustrated starkly in Figure 4.

One would expect to see three main sources of variation in the combined cell line (train-
ing) and patient (test) data: differences between sensitive and resistant cell lines, differences
between responders and non-responders among the patients, and systematic differences be-
tween the training set and the test set. This is exactly what happens when the chosen
Novartis cell line data are combined with the Chang breast cancer data (SR9). In fact,
the first principal component, which measures the largest source of variation, appears to be
primarily driven by the differences between the cell line training data and the patient tumor
test data. This observation explains why different principal components are significant in
Figure 4.

Because of random noise, one would also expect each of the first three PCs to be a
combination of the three main sources of variation. As a consequence, information about
how to separate the test data may “leak” into the PC that best separates the training data.
This effect would be particularly pronounced if genes that separate the test set but not
the training set were accidentally included in the input to the SVD. As noted earlier, only
31 of the 50 genes that Potti and colleagues reported to separate docetaxel-sensitive from
docetaxel-resistant cell lines can be reproduced using their software. Moreover, 14 of the
other 19 genes had previously been reported to have discriminatory ability on the Chang
test data. If the SVD were performed on the training set alone, then all 19 genes would get
essentially zero weight in the PCs. However, performing the SVD on the joint data would
give nonzero weights to the 14 genes that had discriminatory power on the test set, thus
inappropriately including them in the PC that separates the training set.
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Because these combinations can be driven by random noise, it is also possible that
one can get “better than chance” predictions that point the wrong way. This appears to
have happened in the paper by Potti and colleagues. Their Figure 2c, center panel, contains
predictions for a set of pediatric patients with acute lymphocytic leukemia (ALL) treated
with “adriamycin” (actually, daunorubicin; see GEO datasets GSE650 and GSE651, which
Potti and colleagues1 list as their data source on page 1296). That figure shows 99 resistant
samples and 23 sensitive samples. The paper that originally reported on these samples15,
consistent with our knowledge about the success rate for treating pediatric ALL, claims that
there are 28 resistant and 94 sensitive samples.

The important question, however, is not whether the analysis by Potti and colleagues
was flawed, but whether it is possible to learn genomic signatures of chemoresponse from
the NCI60 cell lines and apply them to predict which patients will respond to chemotherapy.
In this article, we have shown that a specific analytical approach does not work. Other
approaches, which may use a more sophisticated method for feature selection or an alternative
algorithm for training models, might conceivably work. Critically, we have also employed a
method for testing other approaches. The method of comparing cell lines chosen based on
the dose response data to random cell lines can be used to compute empirical p-values for
any statistical method that claims to build predictive models.

We have not shown that it is impossible to take signatures from any cell lines and apply
them to human samples. We do, admittedly, find it biologically implausible that a signature
derived from a relatively small set of cell lines (like the NCI60) that spans numerous tissue
types could produce a robust chemosensitivity signature that would be visible above the
variability arising from the heterogeneity of tissue origins. We do think it possible, however,
that a signature derived from a large panel of non-small-cell lung cancer cell lines could be
relevant for predicting response in lung cancer patients, for example.

METHODS

Public data sources. Table 3 lists the data sets that were used by Potti and colleagues,
along with links to the web sites where they could be located as of December, 2006. Note
that the web site at http://data.cgt.duke.edu/Combo1.php, which is referenced in the
supplementary material on the Nature Medicine web site, has since been removed, and dif-
ferent files have been posted at http://data.cgt.duke.edu/NatureMedicine.php. In this
article, we used (i) individual array data from replicated Novartis experiments on the NCI60
cell lines using Affymetrix U95Av2 microarrays as training data, and (ii) the neoadjuvant
breast tumor data set from the Lancet article by Chang and colleagues4 as test data. Note
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that the Novartis data set, as of December 2006, contains an error: the data for probe set
“100 g at” is duplicated; we removed the duplicate before starting our analysis (SR1).

We also used the summary table data on 50% growth inhibition (GI50), total growth
inhibition (TGI), and 50% lethal concentration (LC50) from the website of the Developmental
Therapeutics Program (DTP) at the National Cancer Institute (NCI). The drug response
data from this source is indexed by NSC number, not by the name of the compound. Table 4
lists the NSC numbers and the names of the drugs studied by Potti and colleagues. In this
report, we focus on docetaxel (taxotere), whose NSC number is 628503.

Statistical analysis. All analysis was performed using version 2.4.0 of the statistical pro-
gramming environment R6 on a machine with four Xeon 2.80 GHz CPUs and 3.5 GB of
RAM, running Windows XP with Service Pack 2. We also used the R packages xtable

(version 1.4-2), cluster (version 1.11.2), and colorspace (version 0.9), which are available
from the Comprehensive R Archive Network (http://cran.r-project.org/). We used three
R packages from BioConductor (http://www.bioconductor.org/); these were Biobase (ver-
sion 1.12.2), affyio (version 1.2.0), and affy (version 1.12.0). Finally, we used version 1.3
of the packages oompaBase, PreProcess, ClassDiscovery and ClassComparison from the
Object-Oriented Microarray and Proteomic Analysis project (available from our web site,
http://bioinformatics.mdanderson.org/software.html).

The binreg software from the Duke web site was run using version 7.0.1 of MATLAB
(The Mathworks Inc., Natick MA) on a 1GHz PowerPC G4 Mac PowerBook laptop running
Mac OS X version 10.3.9. The Chang breast cancer data was processed using the default
settings for the PM -only model in the DNA Chip Analyzer (dchip2006.exe; available from
http://biosun1.harvard.edu/complab/dchip/).5

The complete Sweave source code for this analysis is available at the web site

http://bioinformatics.mdanderson.org/Supplements/ReproRsch-Chemo/index.html.

All additional parameter settings for the software used in the analysis are specified in the
source code.

ACKNOWLEDGEMENTS

We sincerely thank Dr. Anil Potti and Dr. Joseph Nevins of Duke University for their

16



patient cooperation while we asked them numerous questions about their analysis. They
were consistently open and forthcoming, making every effort to supply us with the details
we requested. Our failure to reproduce their results, in the face of their good faith effort
to help us, points out the inherent difficulties in describing these kinds of analyses without
supplying source code.

We thank Zoltan Szallasi, Jane Fridlyand, Lajos Pusztai, Gordon Mills, and David
Stivers for helpful discussions during this work. We also thank Sarah Edmonson for her
detailed comments on an early draft of the manuscript.

This work was partially supported by NIH/NCI grants P50-CA116199, P50-CA070907,
and P50-CA083639.

17



1. Potti, A., et al. Genomic signatures to guide the use of chemotherapeutics. Nat Med
12, 1294–300 (2006).

2. Pounds, S., Morris, S.W. Estimating the occurrence of false positives and false negatives
in microarray studies by approximating and partitioning the empirical distribution of
p-values. Bioinformatics 19, 1236–42 (2003).

3. Benjamini, Y., Hochberg, Y. Controlling the false discovery rate: a practical and pow-
erful approach to multiple testing. JRSS (B) 57, 289–300 (1995).

4. Chang, J.C., et al. Gene expression profiling for the prediction of therapeutic response
to docetaxel in patients with breast cancer. Lancet 362, 362–9 (2003).

5. Li, C., Wong, W.H. Model-based analysis of oligonucleotide arrays: expression index
computation and outlier detection. Proc Natl Acad Sci U S A 98, 31–6 (2001).

6. R Development Core Team. R: A Language and Environment for Statistical Computing
(R Foundation for Statistical Computing, Vienna, Austria, 2006).

7. Lamport, L. LaTeX: A document preparation system (Addison Wesley, Boston, 1994).

8. Laine, C., Goodman, S.N., Griswold, M.E., Sox, H.C. Reproducible research: moving
toward research the public can really trust. Ann Intern Med 146, 450–3 (2007).

9. Leisch, F., Rossini, A.J. Reproducible statistical research. Chance 16, 46–50 (2003).

10. Buckheit, J., Donoho, D.L. Wavelab and reproducible research. In: A. Antoniadis, ed.,
Wavelets and Statistics (Springer-Verlag, Berlin,. New York, 1995).

11. Schwab, M., Karrenbach, M., Claerbout, J. Making scientific computations reproducible.
Computing in Science and Engineering 2, 61–67 (2000).

12. Peng, R.D., Dominici, F., Zeger, S.L. Reproducible epidemiologic research. American
Journal of Epidemiology 163, 783–789 (2006).

13. Gentleman, R. Reproducible research: a bioinformatics case study. Stat Appl Genet Mol
Biol 4, Article 2 (2005).

14. Mansmann, U., Ruschhaupt, M., Huber, W. Reproducible statistical analysis in mi-
croarray profiling studies. Methods Inf Med 45, 139–45 (2006).

15. Holleman, A., et al. Gene-expression patterns in drug-resistant acute lymphoblastic
leukemia cells and response to treatment. N Engl J Med 351, 533–42 (2004).

18



16. Gyorffy, B., et al. Gene expression profiling of 30 cancer cell lines predicts resistance
towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer 118,
1699–712 (2006).

17. Gemma, A., et al. Anticancer drug clustering in lung cancer based on gene expression
profiles and sensitivity database. BMC Cancer 6, 174 (2006).

18. Rouzier, R., et al. Breast cancer molecular subtypes respond differently to preoperative
chemotherapy. Clin Cancer Res 11, 5678–85 (2005).

19. Rouzier, R., et al. Microtubule-associated protein tau: a marker of paclitaxel sensitivity
in breast cancer. Proc Natl Acad Sci U S A 102, 8315–20 (2005).

19



Table 1: Size of the overlap in the top 50 genes using different sets of replicate microarrays.
Average A B C

Average 50 12 17 10
A 12 50 7 4
B 17 7 50 7
C 10 4 7 50

Table 2: Predictions of sensitivity or resistance on the test samples using the optimal set of
principal components (Resp = responder, NR = non-responder).

NR Resp
Resistant 3 1
Sensitive 10 10
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Table 3: Data sets and sources used in the paper by Potti et al.

Data Set Platform Web Site
NCI60 Drug Response http://dtp.nci.nih.gov/docs/cancer/cancer data.html

(Oct 2006 release)
NCI60 expression, Novartis U95Av2 http://dtp.nci.nih.gov/mtargets/download.html
24 breast tumors, docetaxel4 U95Av2 GSE349, GSE350, GDS360
17 lung, 13 ovarian cell lines16 U133A http://www.mrw.interscience.wiley.com/jpages

/0020-7136/suppmat/ijc.21570.html
29 lung cancer cell lines17 U133A GSE4127
Adriamycin treated ALL 15 U133A GSE650, GSE651
51 breast tumor, TFAC18,19 U133A http://data.cgt.duke.edu/Combo1.php
45 breast tumor, FAC U95Av2 subset of GSE3143
171 breast tumor U95Av2 GSE3143
91 lung tumor U133Plus2.0 GSE3141
119 ovarian tumor U133A GSE3149
binreg (MATLAB) software http://data.cgt.duke.edu/Combo1.php

Table 4: NSC numbers of drugs studied by Potti and colleagues.

NSC Number Drug
628503 Docetaxel (Taxotere)
123127 Adriamycin (Doxorubicin)
26271 Cytoxan (Cyclophosphamide)
141540 Etoposide
125973 Paclitaxel (Taxol)
19893 5-Fluorouracil
609699 Topotecan

21


