Load and Check File Quantifications

Keith A. Baggerly, Shannon Neeley, and Kevin R. Coombes

October 9, 2007

1 Introduction

Here, we load the raw quantification data from Dressman et al, and compare these with the values that we obtain directly from the CEL files.

2 Options and Libraries

> options(width $=80$)
> library(affy)
> library(geneplotter)

3 Describing The Raw Data

The paper makes reference to 119 ovarian tumors and 12 ovarian cancer cell lines. The tumors were acquired from either Duke or the Moffitt cancer center. The tumor samples were all from patients treated with primary platinum-based therapy. Patients either exhibited a complete response ($\mathrm{CR}=1$) or an incomplete response $(\mathrm{NR}=0)$. To build a predictive model, the tumor samples were randomly split into a training set of 83 samples and a test set of 36 samples. Most of the patients showed a complete response: 59/83 in the training set and $26 / 36$ in the testing set. If we ignore the training/test divide, there 85 CR patients and 34 NR patients. We do not know which samples were in the training set and which samples were in the test set.

All of the tumor samples were run on Affy U133A chips, and the samples were quantified using the RMA methods in Bioconductor. The paper mentions that the cell lines were run on Affy U133+2's, but we didn't see any indication as to where the quantifications for the cell lines could be found.

The tumor samples were quantified using MAS5.0 in an earlier study (Nature 2006); those quantificiations were posted to GEO as GSE3149. The GEO posting actually lists values for 153 arrays, not 119. For 8 samples (1024, 1877, 2063, 2424, 2479, 2505, 2673, and 2739) there are two listings in GEO (e.g., 1024_a and 1024_b), suggesting that these may have been rerun. For these 8, we don't know which of these we're working with.

Further information is given at the Duke website, http://data.cgt.duke.edu/platinum.php. There are 4 files as of September 30, 2007.

- PlatinumJCO.zip. This contains the 119 initial CEL files from which the tumor sample quantifications were derived. The files are in version 3 (human readable) format.
- correctedplatinum_RMA.xls. This contains the RMA quantifications of the 119 tumor samples. We're not quite sure what the "corrected" in the name refers to. There are 22115 rows of data, as opposed to the 22283 probesets on the array; 168 probes have been excluded. There are 68 AFFX control probes on this chip, which are likely missing, but we don't know which others were omitted yet. The first row gives the sample id.
- OVCclinicalinfo.xls. This gives, for each of the 119 tumor samples, an ID to identify the array, post-treatment survival in months, grade, stage, debulking status (optimal or suboptimal), CA 125 post-treatment level, and $\mathrm{NR} / \mathrm{CR}$ status $(\mathrm{NR}=0, \mathrm{CR}=1)$.
- Parameters for SSS software.txt. This gives the parameter values they used when running their software. Unfortunately, several entries refer to files that were not posted as such (e.g., "data.txt", "response.txt", "weight2.txt", and "lung_censor.91.txt"), so these are useful only in terms of suggesting the input format. It also lists NVARIABLES $=6088$, which may refer to a subset of the probesets available.

There is also a link to the software package used, SSS (for "shotgun stochastic search"), at http://xpress. isds.duke.edu:8080/sss/.

4 Loading the Raw Data

We begin by loading the quantifications provided; we saved the xls file in csv format to make this easier.

```
> rda <- "ovcaRMAFromXLS"
> rdaFile <- paste("RDataObjects", paste(rda, "Rda", sep = "."),
+ sep = .Platform$file.sep)
> if (file.exists(rdaFile)) {
+ cat(paste("loading", rda, "from cache\n"))
+ load(rdaFile)
+ } else {
+ ovcaRMAFromXLS <- read.table(file.path("DukeWebSite", "correctedPlatinum_RMA.csv"),
+ header = TRUE, sep = ",", row.names = 1, check.names = FALSE)
+ ovcaRMAFromXLS <- as.matrix(ovcaRMAFromXLS)
+ save(ovcaRMAFromXLS, file = rdaFile)
+ }
loading ovcaRMAFromXLS from cache
```

Let's take a look at the first few values just to make sure everything looks ok.

```
> dim(ovcaRMAFromXLS)
```

```
[1] 22115 119
```

```
> ovcaRMAFromXLS[1:3, 1:5]
```

	0.08	1024	1447	1451	1504
1007_s_at	11.348198	10.326897	10.981040	10.751732	10.792526
1053_at	5.808186	6.420700	6.060294	6.123403	6.834273
117_at	7.062677	6.985818	7.089425	6.682984	6.974176

Looks ok.
We'd also like to get this information from the CEL files. We begin with a bit of parsing, in order to line the CEL file names up with the short identifiers used in ovcaRMAFromXLS.

```
> celFiles <- dir(file.path("DukeWebSite", "PlatinumJCO"))
> length(celFiles)
[1] }11
> celFiles[1:3]
[1] "0074_1772_h133a_872.cel" "0074_1773_h133a_922.cel"
[3] "0074_1774_h133a_1451.cel"
```

Looking at the cel file names, there is a common structure. We want the short string that is prefixed by "h133a_" and suffixed by ".cel".

```
> temp1 <- unlist(strsplit(celFiles, ".cel"))
> temp1[1:3]
[1] "0074_1772_h133a_872" "0074_1773_h133a_922" "0074_1774_h133a_1451"
> temp2 <- unlist(lapply(strsplit(temp1, "h133a_"), function(x) {
+ x[2]
+ }))
> temp2[1:3]
[1] "872" "922" "1451"
> celShortNames <- temp2
> rm("temp1", "temp2")
> names(celShortNames) <- celFiles
> names(celFiles) <- celShortNames
> celFiles[1:3]
```

 872922
 "0074_1772_h133a_872.cel" "0074_1773_h133a_922.cel"
 1451
 "0074_1774_h133a_1451.cel"
> celShortNames[1:3]
0074_1772_h133a_872.cel 0074_1773_h133a_922.cel 0074_1774_h133a_1451.cel
"872" "922" "1451"

The names shown here appear to make sense. Before we use them, let's make sure that they agree with what we get from the quantification table.

```
> sum(!is.na(match(celShortNames, colnames(ovcaRMAFromXLS))))
```

[1] 117

```
> celShortNames[is.na(match(celShortNames, colnames(ovcaRMAFromXLS)))]
0074_1827_h133a_.08.cel 0074_2484_h133a_3250.cel
    ".08" "3250"
> colnames(ovcaRMAFromXLS)[is.na(match(colnames(ovcaRMAFromXLS),
+ celShortNames))]
[1] "0.08" "3249"
```

All but two of the names match. In the case of " 0.08 ", I suspect that the leading 0 was added by Excel at some point. In the case of 3249 vs 3250 , we will assume for now that these refer to the same sample and there was simply a typo. In both of these cases, we fix things by changing the values of celShortNames to match those from ovcaRMAFromXLS.

```
> celShortNames["0074_1827_h133a_.08.cel"] <- "0.08"
> celShortNames["0074_2484_h133a_3250.cel"] <- "3249"
> sum(!is.na(match(celShortNames, colnames(ovcaRMAFromXLS))))
```

[1] 119

```
> names(celFiles)[celFiles == "0074_1827_h133a_.08.cel"] <- "0.08"
> names(celFiles)[celFiles == "0074_2484_h133a_3250.cel"] <- "3249"
> sum(!is.na(match(names(celFiles), colnames(ovcaRMAFromXLS))))
```

[1] 119
Now the names line up.
Next, we the CEL files supplied using RMA.

```
> rda <- "ovcaRMAFromCELEset"
> rdaFile <- paste("RDataObjects", paste(rda, "Rda", sep = "."),
+ sep = .Platform$file.sep)
> if (file.exists(rdaFile)) {
+ cat(paste("loading", rda, "from cache\n"))
+ load(rdaFile)
+ } else {
+ ovcaRMAFromCELEset <- justRMA(celfile.path = file.path("DukeWebSite",
+ "PlatinumJCO"))
+ save(ovcaRMAFromCELEset, file = rdaFile)
+ }
loading ovcaRMAFromCELEset from cache
```

For this analysis, we're willing to work with the matrix of expression values rather than the full ExpressionSet to allow for greater parallelism with ovcaRMAFromXLS. Let's extract this, and adjust the names.

```
> ovcaRMAFromCEL <- exprs(ovcaRMAFromCELEset)
> ovcaRMAFromCEL[1:3, 1:3]
```


5 Comparing Quantifications

Our first question here has to do with identifying the probesets that are "missing" from ovcaRMAFromXLS.

```
> omittedProbesets <- setdiff(rownames(ovcaRMAFromCEL), rownames(ovcaRMAFromXLS))
> length(omittedProbesets)
```

[1] 168
> affyControls <- grep("^AFFX", omittedProbesets)
> length(affyControls)
[1] 68

```
> omittedProbesets[-affyControls]
```

```
    [1] "200000_s_at" "200001_at" "200002_at" "200003_s_at" "200004_at"
    [6] "200005_at" "200006_at" "200007_at" "200008_s_at" "200009_at"
[11] "200010_at" "200011_s_at" "200012_x_at" "200013_at" "200014_s_at"
[16] "200015_s_at" "200016_x_at" "200017_at" "200018_at" "200019_s_at"
[21] "200020_at" "200021_at" "200022_at" "200023_s_at" "200024_at"
[26] "200025_s_at" "200026_at" "200027_at" "200028_s_at" "200029_at"
[31] "200030_s_at" "200031_s_at" "200032_s_at" "200033_at" "200034_s_at"
[36] "200035_at" "200036_s_at" "200037_s_at" "200038_s_at" "200039_s_at"
[41] "200040_at" "200041_s_at" "200042_at" "200043_at" "200044_at"
[46] "200045_at" "200046_at" "200047_s_at" "200048_s_at" "200049_at"
[51] "200050_at" "200051_at" "200052_s_at" "200053_at" "200054_at"
[56] "200055_at" "200056_s_at" "200057_s_at" "200058_s_at" "200059_s_at"
[61] "200060_s_at" "200061_s_at" "200062_s_at" "200063_s_at" "200064_at"
[66] "200065_s_at" "200066_at" "200067_x_at" "200068_s_at" "200069_at"
[71] "200070_at" "200071_at" "200072_s_at" "200073_s_at" "200074_s_at"
[76] "200075_s_at" "200076_s_at" "200077_s_at" "200078_s_at" "200079_s_at"
```

```
[81] "200080_s_at" "200081_s_at" "200082_s_at" "200083_at" "200084_at"
[86] "200085_s_at" "200086_s_at" "200087_s_at" "200088_x_at" "200089_s_at"
[91] "200090_at" "200091_s_at" "200092_s_at" "200093_s_at" "200094_s_at"
[96] "200095_x_at" "200096_s_at" "200097_s_at" "200098_s_at" "200099_s_at"
```

As expected, the 68 Affymetrix controls are among those dropped. The numerical prefixes for the other 100 run sequentially from 200000 to 200099 , so they do form a contiguous block. We have no idea why these were omitted.

Our next question has to do with how well the two sets of numerical values agree for the probesets that remain. Let's take a look at this agreement the first sample in ovcaRMAFromCEL, sample 872.

```
> smoothScatter(ovcaRMAFromCEL[rownames(ovcaRMAFromXLS), "872"],
+ ovcaRMAFromXLS[, "872"], xlab = "CEL: Sample 872", ylab = "XLS: Sample 872",
+ main = "Two RMA Quantifications of Sample 872")
```

Two RMA Quantifications of Sample 872

Actually, the agreement is not as good as we would have expected a priori. We do not necessarily expect the values to coincide perfectly (including other samples in the RMA modeling might tweak the
normalization). But we wouldn't expect expression levels for a given gene to change by a factor or 20 or more either, and there presence of points with x -values near 10 and y -values near 5 implies precisely this given the $\log 2$ nature of RMA values.

Let's take a look at the correlations between the results for sample 872 from ovcaRMAFromCEL and all of the samples in ovcaRMAFromXLS, to see if there is simply poor correlation throughout.

```
> corWith872 <- cor(ovcaRMAFromCEL[rownames(ovcaRMAFromXLS), "872"],
+ ovcaRMAFromXLS)
> plot(t(corWith872), xlab = "Column in ovcaRMAFromXLS", ylab = "Correlation with Sample 872 from CEL",
+ main = "Correlations of 872 from CEL with All Columns of XLS")
> colnames(corWith872)[which.max(corWith872)]
```

[1] "2476"

Correlations of 872 from CEL with All Columns of XLS

Actually, there is one sample that is clearly the best match. However, in ovcaRMAFromXLS, this column is identified as coming from sample 2476. Let's plot these two quantifications against each other.

```
> smoothScatter(ovcaRMAFromCEL [rownames(ovcaRMAFromXLS), "872"],
+ ovcaRMAFromXLS[, "2476"], xlab = "CEL: Sample 872", ylab = "XLS: Sample 2476",
+ main = "Two RMA Quantifications: 872 From CEL, 2476 From XLS")
```

Two RMA Quantifications: 872 From CEL, 2476 From XLS

This is the type of agreement that we would expect to see between two quantifications of the same file with minor modifications in processing.

The mismatch that we see here suggests that the the results for sample 872 are mislabeled in ovcaRMAFromXLS. If this is the case, and these were indeed the quantifications used to derive clinical conclusions, those conclusions may be mistaken.

Let's look at the next sample (sample 922) as a quick check to see whether this mixup is a fluke.

```
> smoothScatter(ovcaRMAFromCEL [rownames(ovcaRMAFromXLS), "922"],
+ ovcaRMAFromXLS[, "922"], xlab = "CEL: Sample 922", ylab = "XLS: Sample 922",
+ main = "Two RMA Quantifications of Sample 922")
```


Two RMA Quantifications of Sample 922

Again, the fit is poor when the names match.

```
> corWith922 <- cor(ovcaRMAFromCEL[rownames(ovcaRMAFromXLS), "922"],
+ ovcaRMAFromXLS)
> plot(t(corWith922), xlab = "Column in ovcaRMAFromXLS", ylab = "Correlation with Sample 922 from CEL",
+ main = "Correlations of 922 from CEL with All Columns of XLS")
> colnames(corWith922)[which.max(corWith922)]
```

[1] "2895"

Correlations of 922 from CEL with All Columns of XLS

Again, there is a clear best match; in this case it is with 2895.
> smoothScatter (ovcaRMAFromCEL[rownames(ovcaRMAFromXLS), "922"],

+ ovcaRMAFromXLS[, "2895"], xlab = "CEL: Sample 922", ylab = "XLS: Sample 2895",
$+\quad$ main $=$ "Two RMA Quantifications: 922 From CEL, 2895 From XLS")

Two RMA Quantifications: 922 From CEL, 2895 From XLS

Again, the fit with the best match looks just like what we might expect from two quantifications of the same file. The mislabeling does not appear to have been a fluke.

At this point, we need to know just how extensive the problem is. Let's take a look at all of the correlations.

```
> corCELWithXLS <- cor(ovcaRMAFromCEL[rownames(ovcaRMAFromXLS),
+ ], ovcaRMAFromXLS[, colnames(ovcaRMAFromCEL)])
> image(1:119, 1:119, corCELWithXLS < O.98, xlab = "CEL", ylab = "XLS",
+ main = "Corr > 0.98, Names in ovcaRMAFromCEL Order")
```

Corr $\mathbf{>} \mathbf{0 . 9 8}$, Names in ovcaRMAFromCEL Order

Looking at where the high correlations are, and ordering the sample names along each axis to match that for ovcaRMAFromCEL (alphabetic ordering of the CEL file names), we see that while there are only 32 cases where we have matches, most of the high correlations are very close to the main diagonal. Further, those not on the diagonal are consistently slightly below it. This suggests some type of indexing offset, though we do not have an explanation for it.

Now we want to specify our best guess as to what the mapping should be. We do this by first searching the correlation matrix for values that are the biggest to be found in their respective rows and columns. When row and column maxima coincide, we've found a good match. Rows and columns that remain ambiguous will then be dealt with.

```
> bestXLSFitsToGivenCEL <- max.col(corCELWithXLS)
> bestCELFitsToGivenXLS <- max.col(t(corCELWithXLS))
> plot(bestCELFitsToGivenXLS, 1:119, cex = 2, lwd = 2, xlab = "CEL",
+ ylab = "XLS", main = "Row and Col Maximum Correlations")
> points(1:119, bestXLSFitsToGivenCEL, pch = 3, cex = 2, col = "red")
```


Row and Col Maximum Correlations

Looking at the plot, we see that the maxima coincide for 116 of the 119 samples. We first identify the CEL files which did not find their match on the first try.
> which(duplicated(bestXLSFitsToGivenCEL))
[1] $\quad 62 \quad 108 \quad 119$
> bestXLSFitsToGivenCEL[c(62, 108, 119)]
[1] 555
> which(bestXLSFitsToGivenCEL == 5)
[1] $\quad 13 \quad 62108119$
> bestCELFitsToGivenXLS[5]
[1] 13

```
> rownames(corCELWithXLS)[c(62, 108, 119)]
```

[1] "D2358" "M3484" "M810"

Next, we look for the XLS entries that don't find their best match immediately.

```
> which(duplicated(bestCELFitsToGivenXLS))
[1] 96 112 113
> bestCELFitsToGivenXLS[c(96, 112, 113)]
[1] 110 109 112
> which(bestCELFitsToGivenXLS == 110)
[1] 56 96
> bestXLSFitsToGivenCEL[110]
[1] 96
> which(bestCELFitsToGivenXLS == 109)
[1] 109 112
> bestXLSFitsToGivenCEL[109]
[1] }10
> which(bestCELFitsToGivenXLS == 112)
[1] 99 113
> bestXLSFitsToGivenCEL[112]
[1] 99
> colnames(corCELWithXLS)[c(56, 112, 113)]
[1] "D1837" "M4161" "M444"
```

Now we know which ones to be on the alert for. The XLS quantifications for D1837, M4161, and M444 do not have very good matches the set of CEL file quantifications.

6 Expanding the Mapping

In addition to the 119 ovarian CEL files supplied on the website for Dressman et al, there are 146 ovarian CEL files supplied on the website for Bild et al (Nature 2006); the latter are a superset of the former. We can also quantify this larger set.

```
> rda <- "ovcaRMAFromBildEset"
> rdaFile <- paste("RDataObjects", paste(rda, "Rda", sep = "."),
+ sep = .Platform$file.sep)
> if (file.exists(rdaFile)) {
+ cat(paste("loading", rda, "from cache\n"))
+ load(rdaFile)
+ } else {
+ ovcaRMAFromBildEset <- justRMA(celfile.path = file.path("OtherData",
+ "BildNature06", "OvarianTumorData"))
+ save(ovcaRMAFromBildEset, file = rdaFile)
+ }
loading ovcaRMAFromBildEset from cache
> ovcaRMAFromBild <- exprs(ovcaRMAFromBildEset)
```

Given the larger set, let's check the correlations again, and tabulate the XLS file name, the best matching CEL file name, the best matching Bild file name, and the top three Bild correlation values for each XLS file. First, put together the structure.

```
> corBildWithXLS <- cor(ovcaRMAFromBild[rownames(ovcaRMAFromXLS),
+ ], ovcaRMAFromXLS)
> bildCheck <- cbind(xlsName = colnames(corCELWithXLS), celName = colnames(corCELWithXLS),
+ bildName = colnames(corCELWithXLS), bildCor1 = rep(0, 119),
+ bildCor2 = rep(0, 119), bildCor3 = rep(0, 119))
> for (i1 in 1:length(colnames(corCELWithXLS))) {
+ bildCheck[i1, "celName"] <- rownames(corCELWithXLS)[which.max(corCELWithXLS[,
+ i1])]
+ bildCheck[i1, "bildName"] <- rownames(corBildWithXLS)[which.max(corBildWithXLS[,
+ colnames(corCELWithXLS)[i1]])]
+ bildCheck[i1, 4:6] <- sort(corBildWithXLS[, colnames(corCELWithXLS)[i1]])[c(146,
+ 145, 144)]
+ }
> bildCheck <- as.data.frame(bildCheck)
> bildCheck["xlsName"] <- as.character(bildCheck[, "xlsName"])
> bildCheck["celName"] <- as.character(bildCheck[, "celName"])
> bildCheck["bildName"] <- as.character(bildCheck[, "bildName"])
> bildCheck[, "bildCor1"] <- as.numeric(as.character(bildCheck[,
+ "bildCor1"]))
> bildCheck[, "bildCor2"] <- as.numeric(as.character(bildCheck[,
+ "bildCor2"]))
> bildCheck[, "bildCor3"] <- as.numeric(as.character(bildCheck[,
+ "bildCor3"]))
> bildCheck <- bildCheck[order(bildCheck[, "bildName"]), ]
> rownames(bildCheck) <- 1:119
```

Next, take a look at the mappings.

```
> bildCheck
```

	xlsName	Name	dName bildCor1	2	3
1	M2807	1784	0074_01776_h133a_1784.cel 0.9926820	0.9566297	0.9557930
2	M3484	0.08	0074_01827_h133a_.08.cel 0.9881092	0.9473432	0.9470600
3	M810	860	0074_01828_h133a_860.cel 0.9914995	0.9688161	0.9670850
4	1784	1615	0074_01829_h133a_1615.cel 0.9748212	0.9710153	0.9683388
5	0.08	1665	0074_01830_h133a_1665.cel 0.9941898	0.9467627	0.9463406
6	860	2465	0074_01834_h133a_2465.cel 0.9845509	0.9440225	0.9440143
7	1615	2999	0074_01835_h133a_2999.cel 0.9964939	0.9700833	0.9692109
8	1665	3142	0074_01836_h133a_3142.cel 0.9808840	0.9485003	0.9483186
9	2465	1774	0074_01906_h133a_1774.cel 0.9854140	0.9453324	0.9431743
10	2064	2064	0074_01908_h133a_2064.cel 0.9856633	0.9661539	9608221
11	2999	2967	0074_01909_h133a_2967.cel 0.9920582	0.9605766	76
12	3142	2573	0074_02003_h133a_2573.cel 0.9874445	0.9712619	9697764
13	1774	2849	0074_02004_h133a_2849.cel 0.9984232	0.9697679	19
14	2967	3102	0074_02005_h133a_3102.cel 0.9950447	0.9718080	0.9697266
15	2573	2802	0074_02026_h133a_2802.cel 0.9945379	0.9604171	0.9591595
16	2849	2424	0074_02028_h133a_2424.cel 0.9955498	0.9546375	0.9537399
17	3102	2063	0074_02029_h133a_2063.cel 0.9724740	0.9554820	0.9542840
18	2802	2476	0074_02394_h133a_2476.cel 0.9944180	0.9508070	0.9506363
19	2424	2895	0074_02400_h133a_2895.cel 0.9900188	0.9626413	0.9593705
20	2063	2981	0074_02403_h133a_2981.cel 0.9957414	0.9824611	0.9637875
21	3249	3249	0074_02484_h133a_3250.cel 0.9877743	0.9562246	0.9538962
22	2476	872	0074_1772_h133a_872.cel 0.9943223	0.9636400	0.9618316
23	2895	922	0074_1773_h133a_922.cel 0.9928437	0.9604397	0.9597264
24	2981	1451	0074_1774_h133a_1451.cel 0.9937170	0.9632513	0.9623755
25	872	1526	0074_1775_h133a_1526.cel 0.9816869	0.9597752	0.9585888
26	922	1834	0074_1777_h133a_1834.cel 0.9695620	0.9544054	0.9536421
27	1451	1846	0074_1778_h133a_1846.cel 0.9911025	0.9606119	0.9592577
28	1526	2075	0074_1779_h133a_2075.cel 0.9966748	0.9640004	0.9612208
29	1834	2204	0074_1780_h133a_2204.cel 0.9912310	0.9568317	0.9556369
30	1846	2419	0074_1781_h133a_2419.cel 0.9927894	0.9589094	0.9565815
31	2075	1675	0074_1831_h133a_1675.cel 0.9951890	0.9503800	0.9499588
32	2204	2422	0074_1833_h133a_2422.cel 0.9970365	0.9596536	0.9573983
33	2419	1504	0074_1900_h133a_1504.cel 0.9938924	0.9506857	0.9492229
34	1675	1590	0074_1901_h133a_1590.cel 0.9882833	0.9565666	0.9562508
35	2422	1623	0074_1902_h133a_1623.cel 0.9862560	0.9636948	0.9576494
36	1504	2324	0074_1904_h133a_2324.cel 0.9876288	0.9573655	0.9571443
37	1590	1674	0074_1905_h133a_1674.cel 0.9930011	0.9558601	0.9557393
38	1623	1929	0074_1907_h133a_1929.cel 0.9817851	0.9521843	0.9487794
39	2324	2198	0074_1989_h133a_2198.cel 0.9932159	0.9702529	0.9698943
40	1674	1877	0074_2019_h133a_1877.cel 0.9946044	0.9523580	0.9464071
41	1929	2046	0074_2020_h133a_2046.cel 0.9954422	0.9627558	0.9581968
42	2198	2479	0074_2021_h133a_2479.cel 0.9971700	0.9516141	0.9511909
43	1877	2542	0074_2027_h133a_2542.cel 0.9910925	0.9514289	0.9497953
44	2046	1024	0074_2030_h133a_1024.cel 0.9866241	0.9503525	0.9498897
45	2479	2739	0074_2031_h133a_2739.cel 0.9947668	0.9546257	0.9543300
46	2542	2673	0074_2032_h133a_2673.cel 0.9961120	0.9561790	0.9543924
47	1024	2505	0074_2033_h133a_2505.cel 0.9927848	0.9602439	0.9590956

48	39	1447	0074_2395_h133a_1447.cel 0.9928757	0.9640413	0.9618055
49	2673	1913	0074_2396_h133a_1913.cel 0.9909242	0.95877	61
50	2505	1552	0074_2397_h133a_1552.cel 0.9941829	0.96470	0
51	47	1578	0074_2398_h133a_1578.cel 0.9935861	0.9578255	5
52	1913	3107	0074_2399_h133a_3107.cel 0.9791127	0.9537286	0.9535498
53	1552	3018	0074_2401_h133a_3018.cel 0.9947323	0.9535522	0.9533976
54	1578	3090	0074_2402_h133a_3090.cel 0.9909406	0.9585605	0.9561681
55	3107	D1805	0193_00000_h133a_D1805.cel 0.9872051	0.9504583	0.9493932
56	3018	D1859	0193_00000_h133a_D1859.cel 0.9912899	0.9543120	62
57	D2098	D2098	0193_00000_h133a_D2098.cel 0.9947249	0.9609	08
58	3090	D2	0193_00000_h133a_D2208.cel 0.9950948	0.9550372	26
59	D1805	D2342	0193_00000_h133a_D2342.cel 0.9961207	0.9733474	885
60	D1859	D2	0193_00000_h133a_D2421.cel 0.9968884	0.967	81
61	D2208	D2480	0193_00000_h133a_D2480.cel 0.9875381	0.959	44
62	D2342	D2557	0193_00000_h133a_D2557.cel 0.9942855	0.9668900	79
63	D2421	D2576	0193_00000_h133a_D2576.cel 0.9947073	0.960037	04
64	D2480	D2581	0193_00000_h133a_D2581.cel 0.9896129	0.9634	0.9588543
65	D2557	D2611	0193_00000_h133a_D2611.cel 0.9949943	0.95760	058
66	D2576	D2629	0193_00000_h133a_D2629.cel 0.9950710	. 9685	2
67	D2581	D2640	0193_00000_h133a_D2640.cel 0.9966334	. 967	2
68	D2611	D2648	0193_00000_h133a_D2648.cel 0.99493	0.9550945	5
69	D2629	D2727	0193_00000_h133a_D2727.cel 0.9700504	0.9493768	4
70	D2640	D273	0193_00000_h133a_D2738.cel 0.9926036	0.9479970	0.9471094
71	D2648	D27	0193_00000_h133a_D2776.cel 0.9913903	3506	0.9348196
72	D2727	D27	0193_00000_h133a_D2792.cel 0.99435	0.9610750	0.9608598
73	D2738	M105	0193_00000_h133a_M1054.cel 0.992420	0.9597049	0.9542825
7	D2358	M1390	0193_00000_h133a_M1390.cel 0.9	0	0.9609212
75	M1390	M1572	0193_00000_h133a_M1572.cel 0.9956644	0	0.9567982
76	D2776	M1	0193_00000_h133a_M17.cel 0.9921536	0.9613312	0
7	D2792	M2070	0193_00000_h133a_M2070.cel 0.	0.9605	0.9588873
78	M1054	M2437	0193_00000_h133a_M2437.cel 0.9953592	0.952	0.9525583
79	M17	M3142	0193_00000_h133a_M3142.cel 0.9967593	0	0.9569580
80	M1572	M359	0193_00000_h133a_M359.cel 0.9893443	0.960952	0.9608295
8	M2070	M4161	0193_00000_h133a_M4161.cel 0.9972001	0.9671245	0.9645470
82	M2437	M444	0193_00000_h133a_M444.cel 0.9968686	0.968683	0.9627136
83	M3142	D1837	0193_10000_h133a_D1837.cel 0.9956409	0.9596538	0.9586865
84	M4161	M3514	0193_10000_h133a_D2159.cel 0.9940312	0.959279	0.9568668
85	M444	M4161	0193_10000_h133a_D2171.cel 0.9933361	0.961077	0.9577707
86	D1837	M359	0193_10000_h133a_D2247.cel 0.9886348	0.9316258	0.9291977
87	D2332	D2332	0193_10000_h133a_D2332.cel 0.9959141	0.9666855	0.9659541
88	D2432	D2432	0193_10000_h133a_D2432.cel 0.9963716	0.9651230	0.9650317
89	D2433	D2433	0193_10000_h133a_D2433.cel 0.9946305	0.9614134	0.9579562
90	D2559	D2559	0193_10000_h133a_D2559.cel 0.9937811	0.9663077	0.9627052
91	D2560	D2560	0193_10000_h133a_D2560.cel 0.9964361	0.9813157	0.9607497
92	D2572	D2572	0193_10000_h133a_D2572.cel 0.9963744	0.9590666	0.9502720
93	D2575	D2575	0193_10000_h133a_D2575.cel 0.9915036	0.9744510	0.9682305
94	D2603	D2603	0193_10000_h133a_D2603.cel 0.9860988	0.9634429	0.9630732
95	M359	D2668	0193_10000_h133a_D2668.cel 0.9961116	0.9667837	0.9667216

| 96 | D2689 | D2689 | 0193_10000_h133a_D2689.cel | 0.9954061 | 0.9684339 | 0.9682928 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | :--- |
| 97 | D2691 | D2691 | 0193_10000_h133a_D2691.cel | 0.9956504 | 0.9493081 | 0.9482940 |
| 98 | D2700 | D2700 0193_10000_h133a_D2700.cel | 0.9895614 | 0.9479288 | 0.9479090 | |
| 99 | D2726 | D2726 | 0193_10000_h133a_D2726.cel | 0.9925030 | 0.9603756 | 0.9578855 |
| 100 | D2733 | D2733 | 0193_10000_h133a_D2733.cel | 0.9966983 | 0.9704670 | 0.9690580 |
| 101 | D2749 | D2749 | 0193_10000_h133a_D2749.cel | 0.9956807 | 0.9436386 | 0.9430509 |
| 102 | D2668 | M1055 | 0193_10000_h133a_M1055.cel | 0.9941089 | 0.9646771 | 0.9621903 |
| 103 | M120 | M120 | 0193_10000_h133a_M120.cel | 0.9952542 | 0.9647887 | 0.9633458 |
| 104 | M1241 | M1241 | 0193_10000_h133a_M1241.cel | 0.9969275 | 0.9579454 | 0.9572306 |
| 105 | M1503 | M1503 | 0193_10000_h133a_M1503.cel | 0.9943912 | 0.9601343 | 0.9594766 |
| 106 | M1891 | M1891 | 0193_10000_h133a_M1891.cel | 0.9911004 | 0.9678596 | 0.9637527 |
| 107 | M1055 | M2097 | 0193_10000_h133a_M2097.cel | 0.9958288 | 0.9642369 | 0.9634825 |
| 108 | M2184 | M2184 | 0193_10000_h133a_M2184.cel | 0.9945751 | 0.9579148 | 0.9565246 |
| 109 | M2515 | M2515 | 0193_10000_h133a_M2515.cel | 0.9947837 | 0.9513034 | 0.9436120 |
| 110 | M2729 | M2729 | 0193_10000_h133a_M2729.cel | 0.9904464 | 0.9563503 | 0.9558432 |
| 111 | M2097 | M2807 | 0193_10000_h133a_M2807.cel | 0.9958400 | 0.9649520 | 0.9638534 |
| 112 | M337 | M337 | 0193_10000_h133a_M337.cel | 0.9897121 | 0.9559832 | 0.9525690 |
| 113 | M3514 | M3514 | 0193_10000_h133a_M3514.cel | 0.9965436 | 0.9686661 | 0.9665613 |
| 114 | M3627 | M3627 | 0193_10000_h133a_M3627.cel | 0.9967617 | 0.9568071 | 0.9550400 |
| 115 | M485 | M485 | 0193_10000_h133a_M485.cel | 0.9940410 | 0.9580871 | 0.9533050 |
| 116 | M503 | M503 | 0193_10000_h133a_M503.cel | 0.9925675 | 0.9605806 | 0.9595132 |
| 117 | M5668 | M5668 | 0193_10000_h133a_M5668.cel | 0.9939380 | 0.9604345 | 0.9579929 |
| 118 | M5775 | M5775 | 0193_10000_h133a_M5775.cel | 0.9959831 | 0.9537094 | 0.9528543 |
| 119 | M6199 | M6199 | 0193_10000_h133a_M6199.cel | 0.9945113 | 0.9598195 | 0.9564696 |

Looking at the mappings above, the results are mostly consistent with what we found before, in that the CEL mappings match the Bild mappings. However, there are three discrepancies:

- Row 84, XLS M4161, CEL M3514, Bild D2159
- Row 85, XLS M444, CEL M4161, Bild D2171
- Row 86, XLS D1837, CEL M359, Bild D2247

These are the three ambiguous cases noted in the section above. Looking at these three rows, it is clear that the new best fit is much better in each instance, as the correlations are now $0.994,0.993$, and 0.989 , respectively, with the next best being 0.961 or less. For these three entries in the XLS quantifications, the source files are not in the PlatinumJCO files. Conversely, the three samples D2358, M3484, and M810 are named in the XLS file, but their quantifications are not present.

As noted above, the type of mismatch seen using the names of the CEL files to order things suggests a systematic offset, in most cases of 3 rows.

Let's check how good the fits are at this point.

```
> plot(bildCheck[order(bildCheck[, 4]), 4], ylim = c(0.93, 1),
+ xlab = "Index", ylab = "Correlation, XLS w Best 3 CELs",
+ main = "Correlation of XLS Files with 3 Best CELs, Sorted by Max Corr")
> points(bildCheck[order(bildCheck[, 4]), 5], ylim = c(0.93, 1),
+ col = "red", pch = "+")
> points(bildCheck[order(bildCheck[, 4]), 6], ylim = c(0.93, 1),
+ col = "blue", pch = "x")
```


Correlation of XLS Files with 3 Best CELs, Sorted by Max Cor

Here, we've plotted the three best correlations for each XLS quantification, sorted so that the maximum correlations are monotonically increasing. What we see is that there is a very large gap between the best correlations and the others - there is a very "clear winner" for almost all of the samples. The least clear case corresponds to XLS 1784, CEL 1615, which has the third lowest maximum correlation overall. Here, however, we have some additional consistency in that the match chosen fits with the systematic name offset noted above.

7 Summary

1. One hundred probe sets (with consecutive probe set IDs starting with 200000_s_at) were omitted from the reported Excel RMA quantifications.
2. Two of the CEL file names do not match names in the Excel spreadsheet.
3. More importantly, based on the correlation coefficients, the sample names appear to have been scrambled between the CEL files and the Excel spreadsheet. Only 32 out of 119 samples appear to have the
correct names in the Excel spreadsheet; most of the problems appear to arise from an undetermined indexing error.
4. For 116 out of 119 samples, we can fairly reliably reconstruct the correct mapping of names. The other three samples do not have obvious matches.
5. The 119 CEL files that are part of the study by Dressman form a subset of the 146 CEL that are part of the study by Bild. The three anomolous columns on the Excel spreadsheet give better matches to three of the files that are in the Bild set but not tyhe Dressman set.

8 Appendix

8.1 Saves

There are a few objects we have constructed here that we would like to keep around.

```
> save(celFiles, file = paste("RDataObjects", "celFiles.Rda", sep = .Platform$file.sep))
> save(celShortNames, file = paste("RDataObjects", "celShortNames.Rda",
+ sep = .Platform$file.sep))
> save(ovcaRMAFromCEL, file = paste("RDataObjects", "ovcaRMAFromCEL.Rda",
+ sep = .Platform$file.sep))
> save(corCELWithXLS, file = paste("RDataObjects", "corCELWithXLS.Rda",
+ sep = .Platform$file.sep))
> save(ovcaRMAFromBild, file = paste("RDataObjects", "ovcaRMAFromBild.Rda",
+ sep = .Platform$file.sep))
> save(corBildWithXLS, file = paste("RDataObjects", "corBildWithXLS.Rda",
+ sep = .Platform$file.sep))
> save(bildCheck, file = paste("RDataObjects", "bildCheck.Rda",
+ sep = .Platform$file.sep))
```


8.2 SessionInfo

```
> sessionInfo()
```

R version 2.5.1 (2007-06-27)
i386-pc-mingw32
locale:
LC_COLLATE=English_United States.1252;LC_CTYPE=English_United States.1252;LC_MONETARY=English_United St
attached base packages:

```
[1] "splines" "tools" "stats" "graphics" "grDevices" "utils"
[7] "datasets" "methods" "base"
```

other attached packages:

survival	ClassDiscovery	cluster ClassComparison	PreProcess	
"2.32"	"2.5.0"	"1.11.7"	"2.5.0"	"2.5.0"
oompaBase	geneplotter	lattice	annotate	affy
"2.5.0"	"1.14.0"	"0.15-11"	"1.14.1"	"1.14.2"

ovca01.Rnw
affyio Biobase
"1.4.1" "1.14.1"

