Assembling Clinical Information for the Bonome Ovarian Data =========================================================== by Keith A. Baggerly ## 1 Executive Summary ### 1.1 Introduction We want to produce an RData file with the clinical information for the ovarian cancer samples profiled by [Bonome et al.](#bonome08) on U133A arrays. ### 1.2 Methods We acquired clinical annotation from the Gene Expression Omnibus (GEO) pages descending from the main page GSE26712, [http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26712](http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26712), on Sep 12, 2012. This includes the GEO GSM id for each sample, the sample ID, Surgery Outcome (DOD, AWD, NED), and Survival in Years. A csv file of this annotation is stored in RawData as bonomeClinical.csv. We load the clinical information into a data frame, and construct an R "Surv"" object for overall survival. ### 1.3 Results We save bonomeClinical and bonomeOSYrs to the RData file "bonomeClinical.RData". ## 2 Libraries We first load the libraries we will use in this report. ```{r libraries} library(survival) ``` ## 3 Loading the Data Here we simply load the table of clinical information. ```{r loadBonomeClinical} bonomeClinical <- read.table(file.path("RawData","Bonome","Clinical","bonomeClinical.csv"), header=TRUE, sep=",") dim(bonomeClinical) bonomeClinical[1:3,] rownames(bonomeClinical) <- as.character(bonomeClinical[,"SampleID"]) ``` ## 4 Defining Overall Survival Next, we define an R "Surv"" object for overall survival (OS) We begin by looking at the recorded values for patient status. ```{r examineStatus} table(bonomeClinical[,"Status"]) ``` Here, AWD = Alive with Disease, DOD = Dead of Disease, and NED = Alive with no Evidence of Disease. Next, we define an indicator vectors for OS. ```{r defineOS} bonomeOSStatus <- rep(NA,nrow(bonomeClinical)) bonomeOSStatus[bonomeClinical[,"Status"]=="AWD"] <- "Censored" bonomeOSStatus[bonomeClinical[,"Status"]=="DOD"] <- "Uncensored" bonomeOSStatus[bonomeClinical[,"Status"]=="NED"] <- "Censored" table(bonomeOSStatus) ``` Now we create the Surv object. ```{r createSurv} bonomeOSYrs <- Surv(bonomeClinical[,"SurvivalYears"], bonomeOSStatus=="Uncensored") rownames(bonomeOSYrs) <- rownames(bonomeClinical) ``` ## 5 Saving RData Now we save the relevant information to an RData object. ```{r saveBonomeClinical} save(bonomeClinical, bonomeOSYrs, file=file.path("RDataObjects","bonomeClinical.RData")) ``` ## 6 Appendix ### 6.1 File Location ```{r getLocation} getwd() ``` ### 6.2 SessionInfo ```{r sessionInfo} sessionInfo(); ``` ## 7 References >
[1] Bonome T, Levine DA, Shih J, Randonovich M, Pise-Masison CA, Bogomolniy F, Ozbun L, Brady J, Barrett JC, Boyd J, Birrer MJ. A gene signature predicting for survival in suboptimally debulked patients with ovarian cancer. Cancer Res, 68(13):5478-86, 2008.