by Keith A. Baggerly
We want to produce an RData file with the clinical information for the ovarian cancer samples profiled by Bonome et al. on U133A arrays.
We acquired clinical annotation from the Gene Expression Omnibus (GEO) pages descending from the main page GSE26712, http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26712, on Sep 12, 2012. This includes the GEO GSM id for each sample, the sample ID, Surgery Outcome (DOD, AWD, NED), and Survival in Years.
A csv file of this annotation is stored in RawData as bonomeClinical.csv.
We load the clinical information into a data frame, and construct an R “Surv”“ object for overall survival.
We save bonomeClinical and bonomeOSYrs to the RData file "bonomeClinical.RData”.
We first load the libraries we will use in this report.
library(survival)
## Loading required package: splines
Here we simply load the table of clinical information.
bonomeClinical <- read.table(file.path("RawData", "Bonome", "Clinical", "bonomeClinical.csv"),
header = TRUE, sep = ",")
dim(bonomeClinical)
## [1] 195 5
bonomeClinical[1:3, ]
## GEO.ID SampleID SurgeryOutcome Status SurvivalYears
## 1 GSM657519 HOSE2237 NA
## 2 GSM657520 HOSE2008 NA
## 3 GSM657521 HOSE2061 NA
rownames(bonomeClinical) <- as.character(bonomeClinical[, "SampleID"])
Next, we define an R “Surv”“ object for overall survival (OS) We begin by looking at the recorded values for patient status.
table(bonomeClinical[, "Status"])
##
## AWD DOD NED
## 10 24 129 32
Here, AWD = Alive with Disease, DOD = Dead of Disease, and NED = Alive with no Evidence of Disease.
Next, we define an indicator vectors for OS.
bonomeOSStatus <- rep(NA, nrow(bonomeClinical))
bonomeOSStatus[bonomeClinical[, "Status"] == "AWD"] <- "Censored"
bonomeOSStatus[bonomeClinical[, "Status"] == "DOD"] <- "Uncensored"
bonomeOSStatus[bonomeClinical[, "Status"] == "NED"] <- "Censored"
table(bonomeOSStatus)
## bonomeOSStatus
## Censored Uncensored
## 56 129
Now we create the Surv object.
bonomeOSYrs <- Surv(bonomeClinical[, "SurvivalYears"], bonomeOSStatus == "Uncensored")
rownames(bonomeOSYrs) <- rownames(bonomeClinical)
Now we save the relevant information to an RData object.
save(bonomeClinical, bonomeOSYrs, file = file.path("RDataObjects", "bonomeClinical.RData"))
getwd()
## [1] "\\\\mdadqsfs02/workspace/kabagg/RDPaper/Webpage/ResidualDisease"
sessionInfo()
## R version 2.15.3 (2013-03-01)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
##
## locale:
## [1] LC_COLLATE=English_United States.1252
## [2] LC_CTYPE=English_United States.1252
## [3] LC_MONETARY=English_United States.1252
## [4] LC_NUMERIC=C
## [5] LC_TIME=English_United States.1252
##
## attached base packages:
## [1] splines stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] survival_2.37-4 knitr_1.2
##
## loaded via a namespace (and not attached):
## [1] digest_0.6.3 evaluate_0.4.3 formatR_0.7 stringr_0.6.2
## [5] tools_2.15.3
[1] Bonome T, Levine DA, Shih J, Randonovich M, Pise-Masison CA, Bogomolniy F, Ozbun L, Brady J, Barrett JC, Boyd J, Birrer MJ. A gene signature predicting for survival in suboptimally debulked patients with ovarian cancer. Cancer Res, 68(13):5478-86, 2008.