Assembling Clinical Information for the Bonome Ovarian Data =========================================================== by Keith A. Baggerly ## 1 Executive Summary ### 1.1 Introduction We want to produce an RData file with the clinical information for the ovarian cancer samples profiled by [Bonome et al.](#bonome08) on U133A arrays. ### 1.2 Methods We acquired clinical annotation from the Gene Expression Omnibus (GEO) pages descending from the main page GSE26712, [http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26712](http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26712), on Sep 12, 2012. This includes the GEO GSM id for each sample, the sample ID, Surgery Outcome (DOD, AWD, NED), and Survival in Years. A csv file of this annotation is stored in RawData as bonomeClinical.csv. We load the clinical information into a data frame, and construct an R "Surv"" object for overall survival. ### 1.3 Results We save bonomeClinical and bonomeOSYrs to the RData file "bonomeClinical.RData". ## 2 Libraries We first load the libraries we will use in this report. ```r library(survival) ``` ``` ## Loading required package: splines ``` ## 3 Loading the Data Here we simply load the table of clinical information. ```r bonomeClinical <- read.table(file.path("RawData", "Bonome", "Clinical", "bonomeClinical.csv"), header = TRUE, sep = ",") dim(bonomeClinical) ``` ``` ## [1] 195 5 ``` ```r bonomeClinical[1:3, ] ``` ``` ## GEO.ID SampleID SurgeryOutcome Status SurvivalYears ## 1 GSM657519 HOSE2237 NA ## 2 GSM657520 HOSE2008 NA ## 3 GSM657521 HOSE2061 NA ``` ```r rownames(bonomeClinical) <- as.character(bonomeClinical[, "SampleID"]) ``` ## 4 Defining Overall Survival Next, we define an R "Surv"" object for overall survival (OS) We begin by looking at the recorded values for patient status. ```r table(bonomeClinical[, "Status"]) ``` ``` ## ## AWD DOD NED ## 10 24 129 32 ``` Here, AWD = Alive with Disease, DOD = Dead of Disease, and NED = Alive with no Evidence of Disease. Next, we define an indicator vectors for OS. ```r bonomeOSStatus <- rep(NA, nrow(bonomeClinical)) bonomeOSStatus[bonomeClinical[, "Status"] == "AWD"] <- "Censored" bonomeOSStatus[bonomeClinical[, "Status"] == "DOD"] <- "Uncensored" bonomeOSStatus[bonomeClinical[, "Status"] == "NED"] <- "Censored" table(bonomeOSStatus) ``` ``` ## bonomeOSStatus ## Censored Uncensored ## 56 129 ``` Now we create the Surv object. ```r bonomeOSYrs <- Surv(bonomeClinical[, "SurvivalYears"], bonomeOSStatus == "Uncensored") rownames(bonomeOSYrs) <- rownames(bonomeClinical) ``` ## 5 Saving RData Now we save the relevant information to an RData object. ```r save(bonomeClinical, bonomeOSYrs, file = file.path("RDataObjects", "bonomeClinical.RData")) ``` ## 6 Appendix ### 6.1 File Location ```r getwd() ``` ``` ## [1] "\\\\mdadqsfs02/workspace/kabagg/RDPaper/Webpage/ResidualDisease" ``` ### 6.2 SessionInfo ```r sessionInfo() ``` ``` ## R version 2.15.3 (2013-03-01) ## Platform: x86_64-w64-mingw32/x64 (64-bit) ## ## locale: ## [1] LC_COLLATE=English_United States.1252 ## [2] LC_CTYPE=English_United States.1252 ## [3] LC_MONETARY=English_United States.1252 ## [4] LC_NUMERIC=C ## [5] LC_TIME=English_United States.1252 ## ## attached base packages: ## [1] splines stats graphics grDevices utils datasets methods ## [8] base ## ## other attached packages: ## [1] survival_2.37-4 knitr_1.2 ## ## loaded via a namespace (and not attached): ## [1] digest_0.6.3 evaluate_0.4.3 formatR_0.7 stringr_0.6.2 ## [5] tools_2.15.3 ``` ## 7 References >
[1] Bonome T, Levine DA, Shih J, Randonovich M, Pise-Masison CA, Bogomolniy F, Ozbun L, Brady J, Barrett JC, Boyd J, Birrer MJ. A gene signature predicting for survival in suboptimally debulked patients with ovarian cancer. Cancer Res, 68(13):5478-86, 2008.