Assembling an RMA Quantification Matrix for the Tothill Ovarian Data

by Keith A. Baggerly

1 Executive Summary

1.1 Introduction

We want to produce an RData file with a matrix of RMA expression values for the ovarian cancer samples profiled by Tothill et al with Affymetrix U133+2 arrays.

1.2 Methods

We acquired a tarball of the 285 gzipped CEL files used from the Gene Expression Omnibus (GEO) page for GSE9891, http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE9891, on September 13, 2012.

We used justRMA to compute RMA fits, and used our previously assembled clinical information to map the GEO GSM ids to remap the column (sample) names.

1.3 Results

We save tothillExpression to the RData file “tothillExpression.RData”.

2 Libraries

We first load the libraries we will use in this report.


library(affy)
library(hgu133plus2cdf)

3 Loading Clinical Information

Next, we load our previously assembled clinical information.


load(file.path("RDataObjects", "tothillClinical.RData"))

4 Specifying the Raw Data Location

Here, we specify the location of the data we acquired from GEO on our local system. You will need to acquire these files and adjust this path before running this report yourself.


pathToTothillData <- file.path("RawData", "Tothill", "CEL_Files")

5 Quantifying The CEL Files

First, we specify the CEL file paths in a character vector for passing to justRMA.


celFileNames <- dir(pathToTothillData, pattern = "^GSM")
celFilePaths <- file.path(pathToTothillData, celFileNames)

Now we use justRMA to summarize expression at the probeset level.


d1 <- date()
tothillExpression <- justRMA(filenames = celFilePaths, compress = TRUE)
tothillExpression <- exprs(tothillExpression)
d2 <- date()
c(d1, d2)
## [1] "Wed Nov 20 11:18:36 2013" "Wed Nov 20 11:22:03 2013"

dim(tothillExpression)
## [1] 54675   285
tothillExpression[1:3, 1:3]
##           GSM249714.CEL.gz GSM249715.CEL.gz GSM249716.CEL.gz
## 1007_s_at           10.037           10.591           10.291
## 1053_at              6.808            7.710            6.657
## 117_at               5.804            5.791            5.905

The justRMA computation takes about 4 minutes on my MacBook Pro.

6 Mapping CEL Names to Sample IDs

We now use the clinical information to replace the GEO GSM ids with the sample ids in the column names.


tempClinRows <- match(substr(colnames(tothillExpression), 1, 9), as.character(tothillClinical[, 
    "GEO.ID"]))
tempNames <- rownames(tothillClinical)[tempClinRows]
tothillClinical[tempNames[1:3], ]
##           GEO.ID SampleID KMeansGroup ClinicalType HistologicSubtype
## X60120 GSM249714    60120           3          LMP               Ser
## X32117 GSM249715    32117           3          LMP               Ser
## X23066 GSM249716    23066           3          LMP               Ser
##        PrimarySite Stage Grade Age Status Pltx Tax Neo MosToRelapse
## X60120          OV    II     1  59     PF    N   N   N           37
## X32117          OV    II     1  26     PF    N   N   N            8
## X23066          OV   III     1  64     PF    N   N   N           18
##        MosToDeath ResidDisease ArraySite
## X60120         37          nil        OV
## X32117          8          nil        OV
## X23066         18          nil        OV
colnames(tothillExpression)[1:3]
## [1] "GSM249714.CEL.gz" "GSM249715.CEL.gz" "GSM249716.CEL.gz"
colnames(tothillExpression) <- tempNames
tothillExpression[1:3, 1:3]
##           X60120 X32117 X23066
## 1007_s_at 10.037 10.591 10.291
## 1053_at    6.808  7.710  6.657
## 117_at     5.804  5.791  5.905

7 Saving RData

Now we save the relevant information to an RData object.


save(tothillExpression, file = file.path("RDataObjects", "tothillExpression.RData"))

8 Appendix

8.1 File Location


getwd()
## [1] "/Users/slt/SLT WORKSPACE/EXEMPT/OVARIAN/Ovarian residual disease study 2012/RD manuscript/Web page for paper/Webpage"

8.2 SessionInfo


sessionInfo()
## R version 3.0.2 (2013-09-25)
## Platform: x86_64-apple-darwin10.8.0 (64-bit)
## 
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## 
## attached base packages:
## [1] parallel  stats     graphics  grDevices utils     datasets  methods  
## [8] base     
## 
## other attached packages:
## [1] hgu133plus2cdf_2.12.0 AnnotationDbi_1.22.6  affy_1.38.1          
## [4] Biobase_2.20.1        BiocGenerics_0.6.0    knitr_1.5            
## 
## loaded via a namespace (and not attached):
##  [1] affyio_1.28.0         BiocInstaller_1.10.4  DBI_0.2-7            
##  [4] evaluate_0.5.1        formatR_0.9           IRanges_1.18.4       
##  [7] preprocessCore_1.22.0 RSQLite_0.11.4        stats4_3.0.2         
## [10] stringr_0.6.2         tools_3.0.2           zlibbioc_1.6.0

9 References

[1] Tothill RW, Tinker AV, George J, Brown R, Fox SB, Lade S, Johnson DS, Trivett MK, Etemadmoghadam D, Locandro B, Traficante N, Fereday S, Hung JA, Chiew YE, Haviv I; Australian Ovarian Cancer Study Group, Gertig D, DeFazio A, Bowtell DD. Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clin Cancer Res, 14(16):5198-208, 2008.