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In Brief

Chen and Liang provide a high-resolution

map of eRNA loci through which super-

enhancer activities can be conveniently

quantified by RNA-seq. The eRNA signals

in cancer samples are clinically relevant

and provide additional explanatory power

for cancer phenotypes beyond those

provided by mRNAs through resolving

intra-tumor heterogeneity with enhancer

cell-type specificity.
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SUMMARY

Although enhancers play critical roles in cancer, quantifying enhancer activities in clinical samples remains
challenging, especially for super-enhancers. Enhancer activities can be inferred from enhancer RNA
(eRNA) signals, which requires enhancer transcription loci definition. Only a small proportion of human
eRNA loci has been precisely identified, limiting investigations of enhancer-mediated oncogenic mecha-
nisms. Here, we characterize super-enhancer regions using aggregated RNA sequencing (RNA-seq) data
from large cohorts. Super-enhancers usually contain discrete loci featuring sharp eRNA expression peaks.
We identify >300,000 eRNA loci in �377 Mb super-enhancer regions that are regulated by evolutionarily
conserved, well-positioned nucleosomes and are frequently dysregulated in cancer. The eRNAs provide
explanatory power for cancer phenotypes beyond that provided by mRNA expression through resolving in-
tratumoral heterogeneity with enhancer cell-type specificity. Our study provides a high-resolution map of
eRNA loci through which super-enhancer activities can be quantified by RNA-seq and a user-friendly data
portal, enabling a broad range of biomedical investigations.

INTRODUCTION

Enhancers are key non-coding DNA sequences regulating their

target genes (Pennacchio et al., 2013). It has been an evolving

concept since the early identification of the Simian virus 40

(SV40) DNA sequence enhancing local gene expression in the

1980s (Banerji et al., 1981), followed by the discovery of endog-

enous locus control regions (Levings and Bungert, 2002). The

chromatin modification of H3K4me1 and H3K27ac are known

to be effective markers for enhancer identification (Creyghton

et al., 2010; Heintzman et al., 2007), and later more epigenetic

markers, such as H3.3 and H2A.Z, were reported to be associ-

ated with enhancer functions (Goldberg et al., 2010; Jin et al.,

2009; Lawrence et al., 2016). With many more enhancer ele-

ments characterized in the human genome (ENCODE Con-

sortium, 2012), the concepts of ‘‘stretch-enhancer’’ and ‘‘su-

per-enhancer’’ were then proposed to refer to large genomic

domains with enriched enhancer activity (Parker et al., 2013;

Whyte et al., 2013). Identified by highly enriched chromatin

immunoprecipitation sequencing (ChIP-seq) signals (Hnisz

et al., 2013), super-enhancers are typically over 10 kb and char-

acterized by the extensive intensity or strength of given enhancer

markers, such as H3K27ac (Hnisz et al., 2013; Loven et al., 2013;

Whyte et al., 2013). They tend to be bound by a large panel of

transcription factors (TFs) related to cell fate determination

(Pott and Lieb, 2015). Using a combination of high-throughput

assays, the ENCODE project has identified the genome-wide

DNA regions with enhancer-like features in >100 cell types

(ENCODE Consortium, 2012). On activation, enhancers open

the local chromatin and expose the DNA motifs to attract TFs

that can further recruit RNA polymerases (usually RNA Pol II) to

generate enhancer RNAs (eRNAs) (Heinz et al., 2015; Murakawa

et al., 2016). First identified in neuronal tissues (De Santa et al.,

2010; Kim et al., 2010), expressed enhancers were systemati-

cally annotated (�65,000 ones) by the FANTOM project in

�400 human tissues and cell types using the cap analysis of

gene expression (CAGE-seq) technique targeting the molecules

with 50 cap (Andersson et al., 2014). While some studies show

strong evidence that eRNAs are functional in gene regulation

by some master TFs and repressors, such as p53, estrogen re-

ceptors, and Rev-Erbs (Lam et al., 2013; Li et al., 2013; Melo

et al., 2013), what proportion of the eRNAs are functional or

merely the by-products of enhancer activation (Catarino and

Stark, 2018; Kim et al., 2015) remains an open question.

The critical roles of enhancers in cancer development and tu-

mor therapeutic response have been increasingly recognized

(Bahr et al., 2018; Mack et al., 2018; Takeda et al., 2018). But

quantifying enhancer activities in clinical tumor samples remains

challenging in practice. RNA sequencing (RNA-seq) data are a

convenient, rich information resource for eRNA quantification
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and enhancer activity approximation (Buenrostro et al., 2013;

Chen et al., 2018a; Murakawa et al., 2016). In particular, it works

well based on the CAGE-defined enhancers because of their

precise eRNA location annotation (Chen et al., 2018a, 2018b;

De Santa et al., 2010). Based on CAGE-defined enhancers anno-

tated by FANTOM, using RNA-seq data from The Cancer

Genome Atlas (TCGA), we recently demonstrated the utility of

the eRNA signals in predicting patient survival and regulation

of therapeutic targets (Chen et al., 2018a). However, the

CAGE-defined enhancer annotation only covers a small fraction

of eRNA loci (�15,000) (Andersson et al., 2014; ENCODE Con-

sortium, 2012). Moreover, unlike RNA-seq, CAGE-seq cannot

be easily applied to large cohorts of tumor samples, such as

TCGA, thereby limiting the power of connecting eRNAs with clin-

ical phenotypes. Therefore, it is highly valuable to systematically

identify the precise eRNA loci that can be measured by routine

RNA-seq data.

To depict a more comprehensive set of eRNA loci beyond

those already annotated by FANTOM, we focused on the su-

per-enhancer regions defined by Hnisz et al. (2013). Although

the concept of super-enhancers is still open to discussion (Pott

and Lieb, 2015), we investigated them for the following scientific

and technical reasons. First, these super-enhancer regions

cover >370 Mb DNA sequence in length and represent regions

with the most enriched regulatory signals in the human genome.

Dysregulation of super-enhancers is frequently associated with

various developmental diseases, including cancer (Alam et al.,

2020; Hnisz et al., 2013; Loven et al., 2013; Whyte et al., 2013),

indicating their potential biomedical significance (Shin, 2018).

Second, compared with typical enhancers, super-enhancers

show much stronger signals of RNA Pol II binding (Hnisz et al.,

2013), implying that their eRNAs may be more actively tran-

scribed and could potentially be detected by TCGA mRNA-seq

data even without CAGE-seq-based annotation (Chen et al.,

2018a). Third, compared with typical enhancers (�200 bp), su-

per-enhancers are much longer (usually >10 kb) (Pott and Lieb,

2015). Thus, background transcription noise across the super-

enhancer bodies substantially confounds the real enhancer acti-

vation signals (Berretta and Morillon, 2009; Nagalakshmi et al.,

2008; Thompson and Parker, 2007), necessitating the precise

separation of the eRNAs from nearby genomic regions (Pott

and Lieb, 2015). Finally, unlike other super-enhancers proposed

later, these super-enhancer regions have been systematically

annotated in a variety of tissues and cell types (86 in total) using

consistent H3K27ac ChIP-seq profiles (Hnisz et al., 2013),

thereby providing a reliable recurrent frequency of super-

enhancer activation across tissues.

We hypothesize that the precise eRNA loci within super-en-

hancers can be resolved by analyzing aggregated RNA-seq pro-

files that combine the RNA-seq data of many individual samples.

This is because eRNA reads associated with real enhancer activ-

ity recurrently accumulate, whereas background transcription

noise tends to occur stochastically. The large number of RNA-

seq reads obtained would compensate for the statistical power

compromised by the low eRNA expression level typically

observed in a single sample. Furthermore, the large sample

size would help distinguish differential activation of neighbor

eRNA loci within a super-enhancer. With the precise eRNA loci

thus defined, it would then be possible to quantify the sample-

specific eRNA levels using routine RNA-seq data, thereby

enabling a broad range of biomedical investigations of super-

enhancer activities, especially in clinical samples.

RESULTS

Recurrent eRNA Expression Peaks in Super-enhancers
Figure 1 shows an overview of our study. Since super-enhancers

are largely tissue-specific and collectively constitute up to �377

Mb of mappable non-coding DNA sequences (Table S1) (Hnisz

et al., 2013), we first focused on a subset of 1,531 (out of

�58,000) core super-enhancers (�5 Mb) that were consistently

identified and activated in >20 (out of 86) tissue/cell types (Hnisz

et al., 2013) (Table S2) for exploratory analysis. To confirm their

RNA Pol II binding activities, we examined the association of

their eRNAs with H3K27ac in 140 cell lines and observed a pos-

itive correlation in the vast majority (>80%) of these core super-

enhancers (Figure S1A-E). Using TCGA RNA-seq data (>10,000

samples of 32 cancer types), we generated the aggregated RNA-

seq profile for each cancer type to elucidate the eRNA transcrip-

tional landscape in super-enhancers, integrated them with the

nucleosome profiling data of 29 tissue/cell types, validated the

patterns using GTEx RNA-seq data (�10,000 samples of 31

normal tissues) and FANTOM CAGE-seq enhancer data (>250

human cell lines), and inferred the underlying principles for iden-

tifying precise eRNA loci. Second, we applied the rules dis-

cerned from this core set to the whole super-enhancer set

(�377 Mb) to construct a fine map of >300,000 eRNA loci. Third,

through a case study of tumor response to immunotherapy, we

demonstrated the power of such a map for eRNA analysis in ex-

plaining complex genotype-phenotype relationships. Finally, we

performed a pan-cancer analysis of these eRNA loci by inte-

grating other TCGA molecular data and built a user-friendly

data portal, The Cancer eRNA Atlas, for the scientific community

to use all the resources generated in this study.

To learn the rules for pinpointing eRNA loci, we calculated the

eRNA expression levels for all tandem 10 bp windows of DNA in

the 5Mb core super-enhancer set using an aggregated RNA-seq

dataset for each of the 32 cancer types (>10,000 TCGA samples

in total). Looking at the transcriptional landscape of super-en-

hancers, we noticed highly recurrent sharp eRNA expression

peaks across super-enhancer bodies, as illustrated by a

�670 bp region in Figure 2A. This is one of the super-enhancer

regions most consistently identified in nearly half (39 out of 86)

of the tissue/cell types (Figure S2A), and also one of the most

widely expressed regions across cancer types (Figures 2A, 2B,

S2B, and S2C). In 28 of the 32 cancer types, we observed five

sharp eRNA expression peaks with lengths of only a few dozen

base pairs near the 70th, 210th, 390th, 520th, and 640th nucle-

otide positions. Interestingly, not only the location of the eRNA

peaks but also their relative heights (expression levels) showed

recurrent patterns, leading to four distinct clusters of the 32 can-

cer types (Figure 2B). Such an eRNA pattern was further

confirmed by the independent GTEx dataset of 31 normal tissues

(Figures 2C, S2D, and S2E) (GTEx Consortium, 2017).

To systematically identify such eRNA peaks, we searched the

1,531 core super-enhancers for local maximums of expression

levels in all possible 200 bp windows and identified a total of

29,828 eRNA expression peaks recurrent in at least three

ll
Article

2 Cancer Cell 38, 1–15, November 9, 2020

Please cite this article in press as: Chen and Liang, A High-Resolution Map of Human Enhancer RNA Loci Characterizes Super-enhancer Activities in
Cancer, Cancer Cell (2020), https://doi.org/10.1016/j.ccell.2020.08.020



TCGA cancer types (false discovery rate [FDR] = 0.12, permuta-

tion analysis; FDR <0.01 when recurrent in more than three can-

cer types, Figure S3A). Interestingly, an overwhelming propor-

tion of these eRNA peaks showed a length of only �100 bp,

which then quickly decreased to the baseline (Figure 3A). This

pattern of a short pulse held true when the maximum search

range was extended to 400 or 600 bp (Figures S3B and S3C),

or using the GTEx dataset (Figures 3B, S3D, and S3E). A typical

peak (the median of 29,828 peaks) has a maximum expression

level that quickly drops by �2.3-fold as close as 50 bp on either

side (Figure 3C). Furthermore, we detected no enrichment of

splicing motifs on the body or boundaries of these peaks, in

contrast to the strong signals observed on intron-exon junctions

(Figures S3F and S3G). We observed a strong signal of tandem

TF binding motifs on either boundary of the eRNA peaks on

both strands (Figure 3D), supporting that they resulted from tran-

scriptional initiation rather than RNA splicing, similar to that of the

FANTOM eRNA loci with precise transcription start sites (TSSs)

(50 cap). These results suggest that there are biologically mean-

ingful eRNA loci in super-enhancers, and they generate discrete,

recurrent, short eRNAs that can be readily detected by RNA-seq.

eRNA Expression Is Regulated by Well-Positioned
Nucleosomes
The eRNA peaks we observedwere as short as�100 bp (Figures

2A and 3C), and this length is close to a 147 bp DNA unit occu-

pied by a typical nucleosome, the unit of chromatin organization.

Because the nucleosome dynamics is a critical feature of TF

binding on DNAmotifs (He et al., 2010; West et al., 2014), we hy-

pothesized that the eRNA peaks in super-enhancers are shaped

by changes in chromatin organization at the nucleosome level in

response to the super-enhancer activation by TF binding. When

the super-enhancer is silent, binding motifs are protected from

being accessed by TFs through promiscuous interactions.

Upon activation, the nucleosome is disassembled, making the

motifs available for TF recognition, whichwould then initiate tran-

scription and generate the observed eRNAs. After activation, the

enhancer sequence released from the TFs would soon be re-

claimed by the nucleosome for protection (Jin et al., 2009; Muel-

ler et al., 2017). The ‘‘state switch’’ of these nucleosomes is likely

to release one unit of 147 bp DNA, thereby explaining the short

(�100 bp) and sharp shape of the eRNA peaks (Figure 3A).

Notably, even though the core super-enhancers we studied are

likely to have effects in multiple tissues, they are still tissue-spe-

cific and should, therefore, be silent in the majority of the tissues

(they are expected to be active in >20% of the tissue types only).

As a result, nucleosomes should occupy the eRNA loci in most

tissues surveyed, thereby allowing the detection of well-posi-

tioned nucleosomes when examining nucleosome binding sig-

nals across tissues. When the super-enhancer is activated, the

situation can be more complicated. Upon transcription initiation,

the nucleosome occupying an eRNA locus would have to be re-

placed by a TF (Brahma and Henikoff, 2019; He et al., 2010).

However, the TF on this ‘‘open’’ DNA competes with intruding

nucleosomes that often contain the histone variants H3.3 and

H2A.Z (Jin et al., 2009; Mirny, 2010; Wasson and Hartemink,

2009) in a tissue-specific manner (Goldberg et al., 2010). The

nucleosome turnover at this site leads to its observation as a

Figure 1. Overview of This Study

Principal discovery: we focused on a subset of 1,531 core super-enhancers (~5Mb) to study their transcriptional patterns by integrating ENCODEChIP-seq data,

TCGA RNA-seq data, and published micrococcal nuclease digestion with deep sequencing (MNase-seq) profiles. Global identification: based on the proposed

model in which well-positioned nucleosomes mediate eRNA transcription, we generalized our analysis to the whole set of super-enhancers (~377 Mb) to

annotate >300,000 eRNA loci in super-enhancers. Application: with the global map of eRNA loci, we assessed the utility of eRNA signals in explaining the

response to immunotherapy, eQTL analysis, pan-cancer analysis, and built a user-friendly data portal for community use. See also Figure S1, Tables S1 and S2.
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Figure 2. Recurrent eRNA Expression Peaks in Super-enhancers

(A) The eRNA expression on chr3:50,265,725-50,266,396 in 4 cancer types representing the 4 clusters (C1-C4) of the 32 TCGA cancer types. Each bar represents

a 10 bp window in the 672 bp region. The y axis shows the reads per kilobase of transcript, per million mapped reads (RPKM) in the 10 bp windows, and the x axis

represents the relative genomic coordinates (bp) in the region. The loci on the 70th, 210th, 390th, 520th, and 640th bp have local maximum RPKMs. These and

their flanking 20 bp regions are highlighted.

(B) A heatmap showing unsupervised clustering of the 32 cancer types based on the relative eRNA expression of all 10 bp windows in this 672 bp region. The

eRNA expression levels (RPKM) are normalized into Z scores within the columns of the heatmap.

(C) The number of TCGA cancer types (top) or GTEx tissue types (bottom) with local maximum RPKM values of sliding 200 bp windows in this region. ACC,

adrenocortical carcinoma; BLCA, bladder urothelial carcinoma; BRCA, breast invasive carcinoma; CESC, cervical squamous cell carcinoma and endocervical

adenocarcinoma; CHOL, cholangiocarcinoma; COAD/READ, colon/rectum adenocarcinoma; DLBC, lymphoid neoplasm diffuse large B-cell lymphoma; ESCA,

esophageal carcinoma; GBM, glioblastoma multiforme; HNSC, head and neck squamous cell carcinoma; KICH, kidney chromophobe; KIRC, kidney renal clear

cell carcinoma; KIRP, kidney renal papillary cell carcinoma; LAML, acute myeloid leukemia; LGG, brain lower grade glioma; LIHC, liver hepatocellular carcinoma;

LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; MESO, mesothelioma; OV, ovarian serous cystadenocarcinoma; PAAD, pancreatic

(legend continued on next page)
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fragile nucleosome (Brahma and Henikoff, 2019), depending on

a variety of factors, such as MNase digestion time (Brahma

and Henikoff, 2019), replication stage (Ramachandran and He-

nikoff, 2016), and salt concentration (Jin et al., 2009). Recent

studies have shown that the widespread nucleosome turnover

in the actively transcribed gene bodies or enhancers is generally

rapid enough so that no change of nucleosome occupation

signal could be observed (Brahma and Henikoff, 2019; Mueller

et al., 2017).

To test this hypothesis, we collected the MNase-seq data of

29 tissue/cell types (Figure S4A) and aligned the nucleosome

signals flanking the 29,828 peaks. We indeed observed well-

positioned nucleosomes on the eRNA expression peaks in all

29 human tissues (Figures 4A and S4B), and even in sperms

where nucleosomes are highly sparse (Figure 4B) (Hammoud

et al., 2009). The occupancy of these nucleosomes is conserved

across macro-evolution, with similar occupancy observed in five

tissues from pig, mouse, and human (Figure 4A, middle and bot-

tom panel) with available MNase-seq data (Jiang et al., 2018),

indicating the functional importance of nucleosome occupancy

at these positions. Thus, our analysis reveals the epigenetic

regulation mediated by nucleosome binding on the transcrip-

tional initiation of eRNAs in super-enhancers (summarized in Fig-

ure 4C), similar to that observed for gene TSSs.

Global Identification of eRNA Loci in Super-enhancers
From the above analysis, we made two key observations related

to the eRNA loci in super-enhancers: (1) a super-enhancer usu-

ally contains multiple eRNA loci generating short eRNA species

<100 bp; and (2) these eRNA loci tend to coincide with well-posi-

tioned nucleosomes. We, therefore, generalized our analysis to

thewhole set of super-enhancers (�377Mb), whichwould other-

wise suffer greatly from the noise of global transcription back-

ground without precise enhancer locus annotation.

We first identified the loci with local maximum RPKM for all

possible 140 bp windows in the super-enhancers in each TCGA

cancer type, generating a total of >4 million eRNA peak positions.

We then calculated the nucleosome signals on the flanking 140 bp

for each peak position in 27 MNase-seq datasets (the two sperm

samples were excluded). To characterize the major patterns of

nucleosomebinding, weperformed principal-component analysis

on these signals (Figure 5A and S5A–S5C). The first three principal

components (PCs) collectively explained�85% of the total varia-

tions. PC1 effectively reflected the averaged local MNase-seq

signal intensity on the flanking 140 bp regions (Figure S5D; Pear-

son’s R = 0.96; p < 2 3 10�16). PC2 and PC3 were independent

of PC1 and from each other (Figures S5E–S5G). They represented

the phase of nucleosomepositioning near the eRNApeak. Specif-

ically, PC2 and PC3 divided the 4 million peaks into three groups

(shown in different colors in Figure 5A): PC2 represented the rela-

tive occupancy of nucleosomeup- or downstreamof the peak po-

sition (Figures 5B and 5C) while a negative PC3 indicated a syn-

chronization between nucleosome occupancy and eRNA

expression signal (Figures 5D, S5H, and S5I). Thus, a negative

PC3 value was a good indicator of an eRNA expression peak

aligned with a well-positioned nucleosome, the eRNA locus of

our interest. Strikingly, a negative PC3 exhibited a strong correla-

tionwith theprobabilityofacommonSNP in theeRNApeaksbeing

a GTEx eQTL (R = �0.93; p = 5.2 3 10�5; Figure 5E), indicating

the functional significance of the eRNA peaks coinciding with

well-positioned nucleosomes. In contrast, PC1was amuchworse

indicator than PC3, emphasizing the importance of nucleosome

positioning rather than the affinity of the local sequence to nucleo-

somes (R = �0.39; p = 0.03; Figure 5F). As true eRNA signals,

rather than transcriptional noise, should be synchronized across

multiple tissues where they function, we found that PC3 was

strongly associated with either the probability of the region

being identified as a super-enhancer in the original 86 tissue/cell

types (R = �0.89; p = 3.7 3 10�6; Figure 5G) or the recurrent

frequency identified in the 32 TCGA cancer types (R = �0.90;

p = 6.73 10�8; Figure 5H).

As described above, the eRNA expression peak also tends to

form sharp and short transcription pulses �100 bp in length,

which can be measured as the relative peak height, by

comparing the peak expression with those of the two ‘‘gulfs’’

�50 bp away from the peak (Figure 3C). We found this value to

be strongly correlated with the probability of a common SNP in

the eRNA peaks being a GTEx eQTL signal (R = �0.996; p <

2 3 10�16; Figure 5I) or the probability of the peak region being

a super-enhancer in the 86 tissue/cell types (R = 0.86; p =

8.9 3 10�7; Figure 5J). Therefore, we decided to integrate the

eRNA peaks with well-positioned nucleosomes to identify

eRNA loci systematically.

Based on a permutation analysis of eRNA loci, we developed

two criteria to identify candidate eRNA loci by searching the 4

million eRNA peaks for those (1) coincident with well-positioned

nucleosomes (PC3 <0) and (2) with sharp eRNA expression peaks

(relative peak height >0.05). We identified >300,000 such eRNA

loci (FDR <0.1, permutation analysis) in the �377 Mb super-

enhancer regions (Table S3). This procedure strongly enriched

recurrent loci (Figures S5J–S5K, ranging from �50,000 to

�120,000 loci per cancer type) that retained high tissue specificity

comparedwith protein-coding genes (Figure S5L). This procedure

also identifiedmanymore such loci in the super-enhancers than in

other regulatory regions or non-regulatory sequences (Fig-

ure S5M), consistent with the enrichment of RNA Pol II ChIP-seq

signals in the super-enhancers. As visualized on chromosome

22, dense eRNA loci were observed across the super-enhancer

regions (Figure 5K, top andmiddle panels). Interestingly, both het-

erogeneous and highly co-activating modules were frequently

found in genomic neighborhoods. For example, the blue super-

enhancer region formed two distinct clusters, whereas a highly

complex co-activation pattern was observed across the structure

of the green super-enhancer (Figure 5K, bottom panel).

We then evaluated the quality of these eRNA loci in several as-

pects. First, to confirm if the identified eRNA loci represent the

true transcription initiation, rather than transcriptional noise, we

analyzed the average enhancer CAGE-seq signal around the

adenocarcinoma; PCPG, pheochromocytoma and paraganglioma; PRAD, prostate adenocarcinoma; SARC, sarcoma; SKCM, skin cutaneousmelanoma; STAD,

stomach adenocarcinoma; TGCT, testicular germ cell tumors; THCA, thyroid carcinoma; THYM, thymoma; UCEC, uterine corpus endometrial carcinoma; UCS,

uterine carcinosarcoma; UVM, uveal melanoma.

See also Figure S2.
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eRNA loci (Andersson et al., 2014). Indeed, there was a sharp

peak of enhancer transcription initiation signal detected by

CAGE-seq at �60 bp upstream of the eRNA loci on either the

Watson or Crick strand (Figures S6A and S6B). The�120 bp dis-

tance between the two CAGE-seq peaks flanking the eRNA loci

is consistent with the role of well-positioned nucleosomes we

proposed (Figure 4C). Although the read depth of CAGE-seq

data was much lower than that of the RNA-seq data, the flanking

CAGE-seq peaks showed an enrichment relative to the genomic

background (Figures S6C and S6D). Despite the local enrich-

ment of CAGE-seq signals near our eRNA loci (Figures S6A

and S6B), it should be emphasized that �77% of the �300,000

eRNA loci are at least 2 kb away from any FANTOM-annotated

enhancer (Figure S6E), highlighting the discovery power of our

approach for novel eRNA loci. Second, we calledwell-positioned

nucleosomes in 15 paired-end MNase-seq samples (Chen et al.,

2013) and found >60% of the eRNA loci to be occupied by well-

positioned nucleosomes in R5 samples studied (Figure S6F),

indicating the robustness of this pattern. Taken together, using

the key features identified in the core super-enhancers, we sys-

tematically identified candidate eRNA loci in the whole set of

super-enhancers. These eRNA loci feature well-positioned nu-

cleosomes (as in gene TSSs [Jiang and Pugh, 2009]) and are en-

riched in eQTL associations, suggesting that these eRNA loci are

functionally important and represent quantifiable units for study-

ing super-enhancer activities using routine RNA-seq data.

eRNA Expression Provides Extra Quantitative Power for
Clinical Phenotypes
Because the effects of enhancers must ultimately converge on

their target genes, one key question is whether and how the

eRNA loci we detected can provide additional quantitative power

A B

C D

Figure 3. Characteristics of the Super-enhancer eRNA Expression Peaks

(A and B) The mean eRNA expression level on the flanking 200 bp sequences of 29,828 recurrent peaks identified in the 1,531 core super-enhancers in 32 TCGA

cancer types (A) or 31 GTEx tissue types (B). For each cancer/tissue type, the 29,828,400 bp sequences were aligned with the peaks at the center (0 bp). Each

point represents a 10 bp window. Mean RPKMwas calculated for all 29,828 10 bp windows with the same relative positions to the peaks (indicated by the x axis).

The resulting mean RPKMs were normalized to Z scores (indicated by the y axis) for each cancer/tissue type.

(C) The consensus profile of a typical eRNA expression peak in the TCGA dataset. The curve represents themedian RPKMof the 29,828 peaks in 32 cancer types.

(D) The density of the TF binding site (TFBS) motifs identified within the flanking 100 bp sequences of the 29,828 peaks. The 29,828,200 bp sequences were

aligned with the peaks at the center (0 bp). Motifs on these DNA sequences were identified using the FIMO software with q < 0.01. The y value of the orange (or

gray) curve represents the number of motif start/end sites identified at the same position relative to the peak (x axis) on the DNA strand indicated by blue arrows.

The phase difference, as indicated by the green arrows, between the orange and the gray curves, represents the enrichment of TFBS motifs at these locations.

See also Figure S3.
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in dissecting genotype-phenotype relationships (Chen et al.,

2018c). With a comprehensive catalog of eRNA loci (>300,000),

we hypothesize that eRNAsignals better explain quantitative traits

than gene expression because of the tissue or cell-type specificity

of the super-enhancers, which can be illustrated as follows. In a

hypothetical case, the cell-type-specific enhancers A, B, and C

are regulators of the gene X in cell types A, B, and C, respectively

(Figure 6A). However, only cell type A contributes to a quantitative

trait through the activity of gene X. As a result, only the activation

level of enhancer A should be strongly associated with the trait,

while the predictive power of gene X is compromised by including

the expression signals of gene X in cell types B and C (which have

no effects on the phenotype of interest). This scenario is particu-

larly relevant in the RNA-seq analysis of clinical tumor samples

in two aspects. First, according to a recent CAGE-based study,

a much larger proportion of eRNAs (>30%) is highly cell-type spe-

cific compared with mRNAs (<5%). Super-enhancers are even

more cell-type specific, and their activation often represents cell

lineages in H3K27ac ChIP-seq studies (Hnisz et al., 2013). Sec-

ond, clinical tissue samples (e.g., solid tumors) usually are a

mixture of various cell types (Marusyk et al., 2020). The eRNA

peaks identified in this study are mostly restricted to a few cancer

types (Figure S5K), distinct from the protein-coding genes in the

same dataset (Figure S5L), which are readily detectable in many

tissues. Therefore, the expression level of protein-coding genes

from bulk RNA-seq data largely reflects the average signals

Figure 4. A Dynamic Nucleosome Model of eRNA Peaks in Super-enhancers

(A) The normalized nucleosome intensities (MNase-seq signals) in the flanking 500 bp sequence of the 29,828 recurrent super-enhancer eRNA peaks in 27 human

tissue/cell types, and 5 mouse and pig tissues. For each tissue/cell type, the 29,828 1 kb sequences were aligned with the eRNA peaks at the center (0 bp). Each

point represents a 10 bp window. The mean number of mapped MNase-seq reads was calculated for all the 29,828 10 bp windows with the same relative

positions to the peaks (indicated by the x axis). The resulting mean signals were normalized into Z scores for each tissue/cell type, as indicated by the y axis.

(B) The normalized nucleosome intensities on two human sperm samples calculated similarly.

(C) A schematic representation of the impact of a dynamic nucleosome on super-enhancer eRNA peaks.

See also Figure S4.

ll
Article

Cancer Cell 38, 1–15, November 9, 2020 7

Please cite this article in press as: Chen and Liang, A High-Resolution Map of Human Enhancer RNA Loci Characterizes Super-enhancer Activities in
Cancer, Cancer Cell (2020), https://doi.org/10.1016/j.ccell.2020.08.020



Distance from 
eRNA peak (bp)

-140 0 140

R=−0.89

p=3.7x10−6

−14.5

−14.0

−13.5

−13.0

−12.5

4 8 12 16

Number of tissues of
super-enhancer

P
C

3

R=−0.90
p=6.7x10−8

−3

−2

−1

0

1

5 10 15 20

Number of cancer types
of transcription peak

P
C

3

R=0.39

p=0.03

1.00

1.04

1.08

1.12

0% 25% 50% 75% 100%

Quantile of nucleosome
occupancy (PC1)

R
el

at
iv

e 
eQ

T
L 

ra
te

R=0.86
p=8.9x10−7

2.25

2.50

2.75

3.00

3.25

0.00 0.25 0.50 0.75 1.00

Quantile of transcription
peak height

N
um

be
r 

of
 ti

ss
ue

s 
of

su
pe

r-
en

ha
nc

er

R=−0.96
p=1x10−11

1.00

1.05

1.10

1.15

0% 25% 50% 75% 100%

PC3 quantile

R
el

at
iv

e 
eQ

T
L 

ra
te

R=0.996
p<2x10−16

1.0

1.1

1.2

1.3

1.4

0% 25% 50% 75% 100%

Quantile of transcription
peak height

R
el

at
iv

e 
eQ

T
L 

ra
te

A

E F

G H

I J

PC2<0
PC3>0

15

20

−150 −100 −50 0 50 100 150

Genomix context (bp)

N
uc

le
so

m
e 

oc
cu

pa
nc

y
(M

ea
n 

m
ap

pe
d 

re
ad

s)

PC2>0
PC3>0

15

20

−150 −100 −50 0 50 100 150

Genomix context (bp)

N
uc

le
so

m
e 

oc
cu

pa
nc

y
(M

ea
n 

m
ap

pe
d 

re
ad

s)

PC3<0

12.5

15.0

17.5

20.0

22.5

−150 −100 −50 0 50 100 150

Genomix context (bp)

N
uc

le
so

m
e 

oc
cu

pa
nc

y
(M

ea
n 

m
ap

pe
d 

re
ad

s)

B C D

chr22:17556103 chr22:18218436

Spearman’s Rho

1 0.5 0 -0.5

K

A 660 kb
block with
5 super-
enhancers

chr22

All 6,891 eRNA
loci on chr22

162 eRNA
loci in the 5

C
o-

ex
pr

es
si

on
 o

f t
he

 1
62

 e
R

N
A

s 
in

 T
C

G
A

 d
at

as
et

5

Figure 5. Identification of eRNA Loci in the Genome-Wide Super-enhancer Regions

(A) Principal-component analysis (PCA) of nucleosome positioning on the flanking 140 bp sequences around ~4million loci of local maximum eRNA RPKMs. The

color represents the distance between the position with the maximum MNase-seq signal and the position of the local maximum eRNA RPKMs. Only the first

10,000 loci are plotted for convenient visualization.

(B–D) The sliding mean of mapped MNase-seq reads in all 27 nucleosome profiles in the flanking 140 bp DNA (each side) were plotted for loci meeting the

indicated criterion: PC2<0/PC3>0 (B), PC2>0/PC3>0 (C), or PC3<0 (D). The sequences meeting the indicated criterion were aligned with the loci of the local

maximum eRNA RPKMs at the center (0 bp). Each point represents a 10 bp window. The mean number of mapped MNase-seq reads was calculated for all 10 bp

windows with the same relative positions to the peaks (indicated by the x axis).

(E and F) The correlation of the PC3 (E) or PC1 (F) quantile with the relative probability for a common SNP in its flanking 20 bp region to be identified as a GTEx

eQTL. For loci with indicated PC3/PC1 quantile, this probability was calculated by dividing the number of GTEx eQTLs in the region with the total number of

common SNPs (minor allele frequency >20% in the 1000 Genome Project) in the region. The resulting probabilities were normalized by dividing them with the

minimum value of all quantiles (y axis). Each error bar represents one standard error of the indicated probability estimated using the binomial distribution. p Values

indicate the significance of the Pearson’s correlation coefficients (PCCs).

(legend continued on next page)
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across different cell types within a tumor sample, whereas the

eRNA levels likely retain more cell-type-specific signals. As a

result, differentially expressed eRNA signals could reasonably

outperform differentially expressed mRNAs in quantitative power

for complex traits determined by one or a few specific cell types,

such as immunotherapy responses and endocrine resistance (Au-

gello et al., 2019; Hanker et al., 2020).

To support the concept, we studied the value of our eRNA loci

in predicting tumor response to cancer immunotherapy. In a

cohort of 28 melanoma tumors differentially responding to the

anti-PD1 immunotherapy (Hugo et al., 2017), the response to

which requires the interactions among T cells, tumor cells, and

an array of other cells in the microenvironment, we found that

none of the�20,000 coding genes showed significant differential

expression (Figure 6B; q < 0.1), as originally reported (Hugo et al.,

2017). In sharp contrast, when the same statistics were applied

to the �40,000 eRNA loci identified in TCGA melanoma dataset,

we detected 164 eRNAs with differential expression at the level

of q < 0.05 (Figure 6C; Table S4). Interestingly, all of these 164

eRNA loci showed consistent hyper-activation in the fully re-

sponding group (Figure 6D), even though they were evenly

distributed across the genome (Figure S7A). To understand the

biological theme of these eRNA signals, we identified their 36

target genes by eQTLs (as annotated by GTEx) and performed

gene set enrichment analysis (GSEA). This small gene set

showed significant enrichment for the genes downregulated in

exhausted CD8+ T cells and those overexpressed in expanding

CD8+ T cells (Figure 6E), suggesting that the activation of the

164 super-enhancer eRNAs (and hence the 36 genes) is impor-

tant in the functional CD8+ T cells. Consistently, the 164 eRNAs

were expressed in the primary T cells while being largely unde-

tectable in several homogeneous cell lines regardless of tissue

of origins (Figure S7B). To further support this finding, the com-

bined expression level of these 164 eRNAs was correlated with a

T cell dysfunction gene signature (R = �0.35; n = 310; p = 6.6 3

10�10; Figure S7C), and a T cell exclusion signature (R = �0.15;

n = 310; p = 73 10�3; Figure S7D) obtained from a recent gene-

based study where the predictive model was developed based

on dozens of cancer patient cohorts (Jiang et al., 2018). Further-

more, the two GSEA gene signatures were associated with pa-

tient survival in a cohort of 42 melanoma patients receiving

anti-CTLA4 immunotherapy (Van Allen et al., 2015). These results

provide a vivid example of how the eRNA signals can provide

additional insights beyond mRNA expression analysis by

resolving intra-tumor heterogeneity through their cell-type spec-

ificity (CD8+ T cell in this case).

eRNA Loci Are Dysregulated and Show Clinical
Relevance in Cancer
To study super-enhancer dysregulation in human cancers, we

first compared the expression levels of the �300,000 eRNA

loci between tumors and normal samples in 12 cancer types

withR20 tumor-normal sample pairs and observed a global acti-

vation of super-enhancers in many cancers (Figure 7A), similar to

that of typical enhancers we recently reported (Chen et al.,

2018a). Interestingly, a substantial portion of the eRNA loci

was affected by the driver events of focal copy-number amplifi-

cation,�4-fold more likely than being affected by driver deletion

events (Figure 7B). This pattern was in sharp contrast to the con-

tributions of copy-number driver events affecting protein-coding

genes, for which focal deletions were �1.2-fold more likely to

occur (Figure 7C). The same pattern held true when recurrent

events across multiple cancer types were merged (Figure 7D).

CpG methylation plays a critical role in controlling its nearby

regulatory elements (Skvortsova et al., 2019). We found �4,000

eRNA loci containing at least one CpG methylation probe of the

Human Methylation 450k array used in TCGA project. In these

probes, 1,187 (>30%) CpG dinucleotides showed significant

changes at the DNA methylation level (Figure 7E; >20% absolute

changes; FDR < 0.01; paired t test). These changes can be clearly

divided into two clusters (hypo- and hypermethylation) with near

consistency across different cancer types (Figure 7E). These

methylation changes were associated with the expression

changes of the 360 eRNA loci (Figures 7F and 7G; log2 fold change

>2; FDR <0.05; paired t test) in the same patients, of which 174

(�50%) events were the deactivation of eRNA loci with hyperme-

thylated CpGs inside (Figure 7G). We observed another 93 activa-

tion events on eRNA loci containing hypomethylated CpGs (Fig-

ure 7F). These results support that the hypermethylation of

within-peak CpGs is an important indicator of super-enhancer

deactivation during tumorigenesis (Skvortsova et al., 2019).

Finally, we found �50,000 eRNA loci (or �62,000 associations)

whose expression levels were associated with clinical outcomes,

such as patient survival time, in at least one cancer type (Fig-

ure 7H), supporting their functional and clinical relevance.

To facilitate the community use of our results, we have built a

user-friendly data portal, The Cancer eRNA Atlas (https://

bioinformatics.mdanderson.org/public-software/tcea). This data

portal provides (1) the detailed annotation of mappable non-cod-

ing super-enhancer regions (�377 Mb) surveyed in this study; (2)

the details of the core super-enhancer regions (�5 Mb); (3) the

expression level (RPKM) of >300,000 super-enhancer transcrip-

tion units in >10,000 TCGA tumor samples, >9,600 GTEx normal

(G and H) The correlation of the PC3 quantile with the frequency for the loci to be identified as a super-enhancer in the original 86 tissue/cell types (G) or with the

recurrence frequency as local maximum RPKM in 32 TCGA cancer types (H). Each error bar represents one standard error of the mean. p Values indicate the

significance of PCCs.

(I) The correlation of the relative height of a locuswith the relative probability for a commonSNP in its flanking 20 bp to be identified as aGTEx eQTL. Each error bar

represents one standard error of the indicated probability estimated using the binomial distribution. p Values indicate the significance of the PCCs.

(J) The correlation of the relative height of a locus with the frequency for the loci to be identified as a super-enhancer in the original 86 tissue/cell types. Each error

bar represents one standard error of the mean. p Values indicate the significance of PCCs.

(K) The distribution of eRNA peaks in super-enhancer regions on chr22 (top panel), with each dot representing one of the ~7,000 peaks on the chromosome (the

second panel). A ~660 kb block containing the first 5 super-enhancers is zoomed in on the third panel. The order of the 162 eRNAs in these regions (fourth panel)

and a heatmap representing the pairwise correlation (Spearman’s rho) among the 162 super-enhancer eRNA peaks in the region across 66 TCGA cancer

subtypes (bottom panel).

See also Figures S5 and S6, and Table S3.
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Figure 6. The eRNA Loci in Super-enhancers Provide Additional Explanatory Power for Immunotherapeutic Response by Resolving Tumor

Heterogeneity

(A) A cartoon model illustrating how cell-type-specific enhancers can increase the explanatory power of quantitative traits by resolving tumor heterogeneity. Left:

a hypothetical bulk tumor consists of three different cell types in which enhancer A, B, or C controls the expression of gene X, respectively; and only cell type C

contributes to a phenotype of interest. Right: distinct correlation patterns when correlating different eRNA or mRNA signals with the phenotype.

(B) The p value distribution of coding genes through the differential analysis in a cohort of 28 melanomas with different responses to anti-PD1 immunotherapy

(q < 0.1).

(C) The p value distribution of eRNAs through the differential analysis in the same cohort as in (B) (q < 0.05; ANOVA test).

(D) Unsupervised clustering based on the RPKM values of the 164 eRNA loci across the 28 tumors. The RPKMs were normalized by each eRNA peak (row) in the

28 tumors.

(E) GSEA results of the 36 genes targeted by at least one GTEx eQTL in the 164 eRNA locus regions (defined as the flanking 50 bp DNA on either side of the eRNA

loci). p Values and FDR were calculated by the GSEA webserver.

(legend continued on next page)
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samples, and >900 CCLE cell lines; (4) the super-enhancer eRNA

loci and genes associated with responses to immunotherapy; (5)

the associations of super-enhancer transcription unitswith clinical

outcome, somatic copy-number alteration, and CpG methylation

in TCGA datasets; and (6) the 3D eRNA locus/promoter interac-

tions in >50 ChIA-PET or HiC datasets (Wang et al., 2018), result-

ing in a strong enrichment of positive eRNA/target-gene co-

expression (Figures S7E–S7H); (7) additional super-enhancer

(F) The combined expression level (sum of log2RPKM) of the 8 non-redundant genes in (E) exhibits prognostic power in a cohort of 42 patients receiving anti-

CTLA-4 immunotherapy (p = 0.037; one-sided Fleming-Harrington test).

See also Figure S7 and Table S4.
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Figure 7. Pan-cancer Analysis of the eRNA Loci in Super-enhancers

(A) Differential expression of eRNA loci between tumor and normal samples in 12 cancer types with >20 tumor-normal pairs; *p < 0.01 (paired t test).

(B) Numbers of driver focal somatic copy-number alterations (SCNAs) affecting at least one eRNA locus but no protein-coding genes. Driver focal SCNAs were

detected by GISTIC.

(C) The number of driver focal SCNAs affecting the protein-coding genes.

(D) The same analysis as in (B) except that the overlapping focal SCNAs identified in different cancer types were merged.

(E) Differential CpG methylations in eRNA loci between tumor and normal samples in 10 cancer types with methylation profiles of >10 tumor-normal pairs

available. Hypo/hypermethylation in tumors, compared with normal, is indicated as red/blue. Only significant changes are colored (q < 0.01; paired t test). Probes

with absolute changes >20% in at least one cancer type were included in the unsupervised clustering.

(F and G) The number of differential expressions for eRNA loci, including significant hypomethylation (F) or hypermethylation (G) changes as defined in (E) (>20%

and q < 0.01). Differential expression changes were determined by paired t test.

(H) The number of eRNA loci with prognostic power on overall survival, progression-free interval, or disease-specific survival in 32 TCGA cancer types (q < 0.05;

log rank test).
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regions: we collected �350 H3K27ac profiles from Cistrome (Liu

et al., 2011) and SEdb (Jiang et al., 2019) and annotated the po-

tential eRNA loci in an additional �350 Mb putative super-

enhancer.

DISCUSSION

We recently showed that cohort-based eRNA expression analysis

is powerful in studying cancer mechanisms based on CAGE-seq-

defined enhancers (Chen et al., 2018a, 2018b). However, it is diffi-

cult to apply a similar strategy to super-enhancers, mostly due to

their large size (>10 kb in length). By integrating dynamic nucleo-

somes with eRNA expression signals from aggregated RNA-seq

data, we developed a systematic strategy to identify their eRNA

loci, wherein the tissue-specific property of super-enhancers is

the key. In a tissue A where the super-enhancer is active, and a

motif is required by the TFs, the local nucleosome is recognized

and labeled by chromatin modifiers and then intentionally opens

to allow the TF-DNA binding; whereas in the majority of tissues

where the super-enhancer is silent, a well-positioned nucleosome

is necessary to prevent the TF-motif contact and suppress un-

wanted enhancer activation (He et al., 2010; Zhang et al., 2008).

This is why we could observe well-positioned nucleosomes coin-

cidingwith the sharp transcriptional peakswhen integrating eRNA

expression and nucleosome position data across different tis-

sues. An alternative model is that, during rapid transcription initia-

tion on enhancers, cells can alter DNA accessibility of well-posi-

tioned nucleosomes using ATP-powered chromatin remodelers

without changing nucleosome occupation (Mueller et al., 2017).

Both models suggest the importance of well-positioned nucleo-

somes on the TF-motifs in enhancers. Strikingly, the constraint

on well-positioned nucleosomes is conserved across a billion

years of evolution, indicating its essential role in maintaining the

overall transcriptional structure of super-enhancers. In contrast

to the eRNA loci we detected, background transcription is a na-

ture of genomeorganization that can be caused byDNAbreathing

(Chen et al., 2012), replication (Brar et al., 2012), or repair (Michel-

ini et al., 2017). As a result, the low background transcription

would amount to substantial noise in large-size regulatory

elements, such as super-enhancers. Importantly, this transcrip-

tional noise does not have a protective (well-positioned) nucleo-

some accompanying it in other tissues, or when the DNA is closed

(Figures 5E and 5I); thus, it is more likely to be associated with

fuzzy nucleosomes (Mavrich et al., 2008).

One limitation of our study is that the public, consortium RNA-

seq datasets (TCGA or GTEx) used are poly(A)+ selected, and

can only capture a subset of eRNA signals. But the aggregated

RNA-seq data across hundreds of individual samples help miti-

gate this limitation and still allow the detection of a large number

of eRNA loci. With the eRNA loci thus defined, the most

frequently generated poly(A)+-selected RNA-seq data can be

readily used to characterize super-enhancer activities. We

expect to detect more eRNA loci using a similar approach on

rRNA-depleted RNA-seq data and will revisit this when a large

amount of such RNA-seq data become available.

In summary, our study systematically identified >300,000

eRNA loci in �377 Mb super-enhancer regions, allowing the

possibility to quantify the activation of super-enhancers using

RNA-seq data. As demonstrated in the case study of cancer

immunotherapy, the eRNA levels can largely retain cell-type-spe-

cific signals, whereas the mRNA expression levels by bulk RNA-

seq data are more likely to be confounded by different cell types

within a tumor sample. Thus, the eRNA loci map defined here will

increase the power to explain quantitative traits beyond gene

expression, thereby opening a newhorizon to investigate the bio-

logical functions andpotential applications of super-enhancers in

various developmental and disease processes.
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METHOD DETAILS

Annotation of Super-enhancers
We obtained the annotation of super-enhancers in a panel of 86 human tissues and cell types from a previous study (Hnisz et al.,

2013). In total, a list of 58,283 genomic regions was identified as super-enhancers in at least one tissue or cell type. This annotation

was based on UCSC Hg19. We obtained all the exons under the attribute ‘‘ensembl_exon_id’’ from the GRCH37 ENSEMBL archive

(https://grch37.ensembl.org/index.html) using the R package ‘‘biomaRt’’ (Durinck et al., 2009) and removed these exons and their

flanking 100 bp sequences from the above-mentioned super-enhancer regions to avoid contamination of transcriptional signals

with known genes. We then obtained a human genome benchmark (Zook et al., 2014) from ftp://ftp-trace.ncbi.nih.gov/giab/ftp/

data/NA12878/analysis/NIST_union_callsets_06172013/union13callableMQonlymerged_addcert_nouncert_excludesimplerep_

excludesegdups_excludedecoy_excludeRepSeqSTRs_noCNVs_v2.18_2mindatasets_5minYesNoRatio.bed.gz, that excluded the

genomic regions that were ambiguous for mutation calling or short read mapping. Only the non-coding super-enhancer regions

within the genome benchmark regions were considered for further eRNA expression analysis in this study to control for mappability.

Following these steps, we generated a list of 65,728 genomic regions of super-enhancers (some of the original 58,283 super-en-

hancers were divided into multiple regions) for our eRNA expression analysis (Table S1). To identify a set of core super-enhancer

regions with activities in multiple tissues and cell types, we divided the above sequences into non-overlapping 10 bp windows

and compared all these windows with the original super-enhancer annotations in the 86 tissue and cell types to obtain their tissue

specificity information. We obtained 1,531 genomic regions with super-enhancer activities in >20 of the 86 tissue and cell types (Ta-

ble S2).

Analysis of eRNA and ChIP-seq H3K27ac Signals
For the H3K27ac data, we obtained two datasets from ENCODE (n = 50, most of which are normal human tissues and primary cells)

(ENCODE Consortium, 2012) and the Cistrome database (n = 90, all of which are cancer cell lines) (Mei et al., 2017). The correspond-

ing RNA-seq data for these samples were obtained from the ENCODE (n = 50) and CCLE (n = 90) database (Barretina et al., 2012),

respectively. The identifiers of these samples in the corresponding database are provided in Table S5. Notably, the Cistrome data-

base provides mapped bigwig files in the genome version of UCSC Hg38, and we converted the 1,531 super-enhancer regions from

Hg19 to Hg38 using UCSC liftOver (Casper et al., 2018). For the ENCODE ChIP-seq samples, the level of H3K27ac on each super-

enhancer was defined as the average fold change over the control as provided in the ENCODE bigwig file (Table S5). We used the

average signal in the super-enhancer regions from the ENCODE RNA-seq bigwig files as the readout of eRNA expression. For the

Cistrome H3K27ac dataset, we called the signal on each super-enhancer and then normalized it using the average signal across

the whole genome to measure its H3K27ac level in a given sample. The corresponding RNA-seq bam files of the 90 cancer cell lines

were obtained fromCCLE (the bam file ids are provided in Table S5) (Barretina et al., 2012). The RPMof each of the 1,531 regions was

calculated as the intensity of its eRNA expression. Since the ENCODE dataset and the Cistrome dataset are very different in terms of

genomic coordinates, signal determination, normalization methods, and tissues of origin, we did not combine the two datasets and

calculated the Spearman’s Rhos separately to measure the correlation between an eRNA and its local H3K27ac level for each super-

enhancer in either dataset (Figures S1A and S1B). To evaluate the broadness of the positive correlations, we used a one-sided t-test

on the Spearman’sRhos to calculate p values (so that a large negativeRhowould not pass the t-test). For each super-enhancer, the p

values generated from the two datasets were combined into one using the Fisher’s method (Fisher, 1928) before being subjected to a

q-value computation (Figure S1C) (Storey and Tibshirani, 2003). We then estimated the pi0, or the percentage of true null H0 (no pos-

itive correlation between the eRNA and H3K27ac) based on the distribution of the resulting combined p-values of the 1,531 super-

enhancers using the R package ‘‘qvalue’’ (Figure S1D) (Storey and Tibshirani, 2003), Phison’s LFDR (Phipson, 2013), and Nettleton’s

method (Nettleton et al., 2006).

Super-enhancer eRNA Expression Profiles
For tissue/cancer type (or subtype) level expression profiling, we first combined the 10,004 (including 720 normal samples and 9,284

tumors; see sample information in Table S5) TCGA bam files into merged bam files of 32 cancer types or the 66 cancer subtypes

(Cancer Genome Atlas Research Network et al., 2013). For each of the 10 bp windows on the 1,531 super-enhancer regions, we

calculated the RPKM and classified a window as ‘‘expressed’’ in a given cancer type if at least one read with mapping quality

>20 was observed in R5 samples and >5% of the total samples of that cancer type. The 672 bp long genomic region of

chr3:50,265,725-50,266,396 (Hg19) was selected for illustration in Figure 2A since (i) it was identified as a super-enhancer in nearly

half (39/86) of the tissue/cell types, and (ii) nearly all of the positions in this region were expressed in >30 cancer types.

To identify eRNA peaks in the core super-enhancer regions, we searched the 1,531 regions, using a window size of 200 bp and a

step length of 10 bp, for the local maximum RPKM in each of the 32 cancer types. Two positions of local maximum RPKMs (in

different cancer types) were merged if they were <20 bp away from each other. To merge two peaks, the peak with a local maximum

value in more cancer types determined the position of themerged peak. If the two positions had the same number of supporting can-

cer types, the one with a higher RPKM value determined the position of the merged peak. A position identified as the local maximum

RPKMs inR3 of the 32 cancer typeswas considered as a transcriptional peak on the core super-enhancer. To develop this cutoff, we

removed the reads mapped to the top 10% positions with the highest RPKM in the 5 Mb core super-enhancers (to avoid the bias

introduced by positions with extremely high expression levels) and randomly assigned new positions to the other reads. The
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permutated reads were used as input for peak identification in the same way as described above. We used the 5% quantile of the

RPKM of the resultant peaks as a cutoff. Peaks from real data with a lower RPKM value than the cutoff were defined as false iden-

tification. The FDR of peaks recurrent in a given number of cancer types were thus calculated. More than 96% of the peaks recurrent

inR3 of the 32 cancer types showed higher RPKM than the peaks identified using permutated reads (Figure S3A). The 200 bp win-

dow sizewas changed to 400 bp or 600 bp in Figure 3 to assess any potential technical bias. Using this strategy, we generated a list of

29,828 transcriptional peaks in the�5Mb region of the 1,531 core super-enhancers (related to Figures 2, 3, and S3). To identify eRNA

expression peaks in the general super-enhancer regions (n = 65,728; �377 Mb, see details in Table S1), we computed the RPKM

values of all the non-redundant 10 bp windows. The sequence range for local maximum RPKM search was set to 140 bp as it is

the length of a typical nucleosome. A total of 4,355,962 loci were identified as local maximum RPKMs (of the 140 bp sequence) in

at least one cancer type. For each locus, we calculated (i) the PC3 using the nucleosome positioning around it as described below

and (ii) the relative peak height, which was computed as the local maximumRPKMminus the RPKMat its ± 50 bp loci, whichever was

smaller (Figure 3C). If an identified locus had the local maximum RPKM in more than one cancer type, we used the second largest

relative peak height of these cancer types for this locus to avoid potential outlier effects. Among the�4 million loci of local maximum

RPKMs, we selected 302,951 loci with PC3 <0 and the relative peak height of >0.05 (in RPKM) as the final super-enhancer eRNA

peaks. Notably, two peaks <20 bp away from each other (in different cancer types) were merged as described above. In total, we

identified 302,951 loci (Table S3). To estimate the FDR of eRNA location identification with the cutoff of PC3<0 and the peak height

>0.05 (in RPKM), we used a similar strategy as that for the 5 Mb core super-enhancer regions. Specifically, we removed the top 10%

positions with the highest RPKMvalues and randomly assigned newpositions to the other reads. The permutated readswere used as

input for local maximum RPKM identification. The PC3 and the peak height of the resulted positions of local maximum RPKMs were

calculated as that for the real data. We identified�26,000 peaks passing the two criteria in three permutation analysis and estimated

the eRNA location identification FDR to be �0.086 (FDR <0.1). The peak on chromosome 22 was displayed using the R package

‘‘karyoploteR’’(Gel and Serra, 2017). Chr22 was selected since it is the smallest chromosome and thus provides convenient

visualization.

For sample-level expression profiling, the expression level for each of the 302,951 peaks was defined as the RPKM in its flanking

20 bp region. For all the 302,951 super-enhancer peaks, we computed their expression levels in 10,004 TCGA and 9,664 GTEx RNA-

seq samples (GTEx Consortium, 2017), respectively. For the analysis of rRNA-depleted RNA-seq data, we obtained the data from

GEO (GSE69360) (Choy et al., 2015). The raw reads were mapped to the reference genome hg19 using Tophat2.0 with default set-

tings (Trapnell et al., 2012). The expression level of each eRNA was then defined in the same way as for the TCGA eRNA analysis.

Motif Discovery and Chromatin Organization in Super-enhancer eRNA Peaks
We used the FIMO software (Bailey et al., 2009) with default settings to identify all the DNA motifs annotated by the Mononucleotide

human motifs database (Kulakovskiy et al., 2016) in the flanking 200 bp region of the 29,828 core super-enhancer peaks (related to

Figures 3D and 3E). The FIMO outputs with FDR <0.01 were considered as valid motifs. We identified the splicing factor motifs by

submitting the DNA sequences of interest to the SFmap online server with default settings (http://sfmap.technion.ac.il/) (Paz

et al., 2010).

For nucleosome analysis, we collected a panel of 29 MNase-seq profiles of various human tissues and cell types (including two

sperm samples) (ENCODE Consortium, 2012; Descostes et al., 2014; Diermeier et al., 2014; Du et al., 2017; Gaffney et al., 2012; Gai-

datzis et al., 2014; Gomez et al., 2016; Hammoud et al., 2009; Hu et al., 2011; Jiang et al., 2018; Jung et al., 2012; Kelly et al., 2012; Kfir

et al., 2015; Lavender et al., 2016; Shah et al., 2018;West et al., 2014; Yazdi et al., 2015; Zhang et al., 2016). The raw reads for all these

samples were downloaded from the SRA database (the SRR run IDs are provided in Table S5). Long reads were trimmed to 50 bp to

make the samples more comparable in terms of mappability. All reads were mapped onto the human genome hg19 using Bowtie2

with default settings (Langmead and Salzberg, 2012). Only reads with mapping quality >10 were kept for further analysis. For a read

mapped to the genomic locus of X, we extended the read and considered the region between X+40 to X+110 as being occupied by a

nucleosome confidently (Zhang et al., 2008). The normalized read number (Z-score) on each genomic locus was considered as the

readout of nucleosome occupancy (related to Figures 4 and S3). For evolutionary analysis, we converted the genomic locus on hg19

to mouse (UCSC genome version mm9) and pig (UCSC genome version susScr3) using the UCSC liftOver software (Jiang et al.,

2018). For the PCA, we computed, across 27 human samples (the two sperms were excluded), the mean nucleosome signal of all

10 bp windows within the flanking 140 bp region relative to each of the �4 million loci of local maximum RPKM, generating a matrix

of 29 3 4,355,962 as the input. The first three components, PC1, PC2, and PC3, explained 52.3%, 18.2%, and 13.3% of the total

variation (summed up to be 83.9%), respectively, and were kept for further analysis (related to Figures 5 and S4). Although the

PCA included all the 4 million peaks, only the first 10,000 are displayed in Figure 5A and S4A–S4C for convenient visualization.

The GTEx eQTLs were obtained from the GTEx data portal (GTEx_Analysis_v7_eQTL.tar.gz) under the link https://gtexportal.org/

home/datasets (GTEx Consortium, 2017). For each quantile in Figures 5E, 5F, and 5I, we defined the probability for a common

SNP to be a GTEx eQTL as the number of GTEx eQTLs in the loci’s flanking 20 bp divided by the total number of common SNPs

(minor allele frequency >20% in 1000 Genome Project dataset) in the same regions. For the analysis of CAGE-seq signal flanking

the eRNA loci, we collected 266 CAGE-seq datasets (in ctss format) of human cell lines from http://fantom.gsc.riken.jp/5/

datafiles/latest/basic/human.cell_line.hCAGE/, and 512 human primary cells from http://fantom.gsc.riken.jp/5/datafiles/latest/

basic/human.primary_cell.hCAGE/ as listed in Table S5. Since the ctss files contained the 5-end of CAGE-seq reads from both

FANTOM promoters and enhancers, we selected those from FANTOM eRNAs using reads mapped to the FANTOM enhancers
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(http://fantom.gsc.riken.jp/5/datafiles/latest/extra/Enhancers/human_permissive_enhancers_phase_1_and_2.bed.gz) and their

flanking 200 bp regions. The resultant reads were compared with the 302,951 eRNA loci identified in this study, and the relative dis-

tances of each read to all of its nearby eRNA loci (<1 kb) were calculated. We counted reads within 1 kb distance of two (or more)

eRNA loci multiple times for all the eRNA loci. The 302,951 eRNA loci and their flanking 1 kb DNA were then aligned with the loci

of the eRNA peak at the center. We then counted the number of reads mapped to all the 10 bp tandem windows within these aligned

sequences. Windows with the same relative distance to all the eRNA loci were combined for the calculation of the CAGE-seq signal.

The relative CAGE-seq signal was then defined as the number of reads in a given window normalized by the average number of all

10 bp windows in the aligned sequences (Figures S5A and S5B).

For 15 (out of 29) non-sperm, paired-end MNase-seq profiles, we called individual nucleosomes using DANPOS2.0 (Chen et al.,

2013). The pair-end reads were mapped to the reference genome hg19 using Bowtie2 (Langmead and Salzberg, 2012) with default

settings. The bowtie results were then converted into bed files before being sorted, using the bamtobed function in bedtools (Quinlan

and Hall, 2010). The bed files were input to DANPOS2.0 using danpos.py with default settings. We defined an eRNA locus to overlap

with a nucleosome if the ‘‘center’’ parameter from the DANPOS2.0 result was within the ± 20 bp region of that eRNA locus

(Figure S6G).

eRNA Expression Analysis for Tumor Response to Immunotherapy
We obtained the raw reads of 28 melanoma tumors receiving anti-PD1 immunotherapy from the SRA database (see the SRR IDs in

Table S5)(Hugo et al., 2017). The reads were mapped to the human genome (UCSC hg19) using Bowtie2 with default settings (Lang-

mead and Salzberg, 2012). Only reads with mapping quality >20 were kept for further analysis. We found 37,651 super-enhancer

eRNA loci identified in the TCGA melanoma cancer type (SKCM) with detectable expression in R14 (50%) of the 28 tumors. Each

of these eRNAs was subjected to ANOVA test among the three groups with differential responses to the anti-PD1 immunotherapy.

The p-values were converted to q-values to adjust for multiple comparisons. The 164 eRNA loci with q <0.05 are provided in Table S4

and displayed using the R package ‘‘karyoploteR’’ (Gel and Serra, 2017). The gene-level expressions of these 28 tumors were ob-

tained from the original study. We found 36 GTEx eQTLs on the 164 eRNA loci associated with 36 genes (Table S4). There were no

common SNPs/GTEx eQTLs within the other 128 eRNA loci, and thus, they were not included in the enrichment analysis. The 36

downstream genes of these eQTLs were subjected to GSEA using the GSEA online server (http://software.broadinstitute.org/

gsea/index.jsp) with default settings (Subramanian et al., 2005). The TIDE scores of the 310 TCGA SKCM tumors for immunotherapy

response prediction were obtained from http://tide.dfci.harvard.edu/ (Jiang et al., 2018). For the cohort of 42 patients receiving anti-

CTLA-4 immunotherapy, raw reads were obtained from the SRA database (see the SRR IDs in Table S5) (Van Allen et al., 2015). The

reads were mapped to the human genome (UCSC hg19) using Bowtie2 with default settings. Only reads with mapping quality >20

were kept for further analysis. The log2RPKM of the 8 genes selected from GSEA were calculated and summed up as a combined

score for CD8+ T cell functionality. To test whether this score was associated with better survival in the 42 patients, we used the R

package ‘‘FHtest’’ to perform a one-sided FH-test on its effect on the one-year survival rate (Oller and Langohr, 2017).

Integrative Analysis of eRNA Loci with Other TCGA Molecular and Clinical Data
For somatic copy-number analysis, we surveyed a list of 138,781 focal somatic copy-number alterations (SCNAs) identified with the

GISTIC software with an FDR <0.05 (Mermel et al., 2011) by the TCGA Pan-Cancer analysis consortium (Cancer Genome Atlas

Research Network et al., 2013). We considered SCNAs without overlaps with any genes (or ncRNA) annotated by the Human GEN-

CODE database v18 (https://www.gencodegenes.org/human/releases.html) as non-coding driver events (Frankish et al., 2018). We

found 3,678/1,047 non-coding amplification/deletion SCNAs involving at least one eRNA locus identified in this study. A full list of

these events is provided in our data portal.

For CpG DNA methylation analysis, we selected 3,919 eRNA loci containing at least one CpG probe in the Human Methylation

450K array used in TCGA project. A total of 8,430 TCGA samples have both methylation and super-enhancer peak expression

data available. This 3,91938,430 matrix is provided in our data portal. For differential CpG methylation analysis, we considered

the 10 cancer types with >10 tumor-normal paired samples and used paired t-test to determine the significance of the methylation

changes (ranging from 0% to 100%) between the normal and tumor samples. A CpG methylation change with an FDR <0.01 and an

absolute change >20% was considered as a significant hit.

For prognostic analysis, we surveyed only (i) the eRNA loci annotated in a given cancer type (Table S3), and (ii) with detectable

expression in >10 samples and >10% of the total samples in that cancer type. For each loci, we used the Cox regression coefficient

to measure the association between its expression (determined as either group, RPKM, or log2RPKM) and clinical outcomes

(measured as either overall survival [OS], disease-specific survival [DSS], or progression-free interval [PFI]) (Liu et al., 2018). The

expression level ‘‘group’’ was a binary parameter generated by dividing the patients into two groups according to the RPKM of

the peak of interest, with the lower half (RPKM % median) assigned as 0 and the higher half (RPKM >median) assigned as 1. The

resulting p-values were converted into q-values to correct for multiple comparisons (Storey and Tibshirani, 2003). A list of 49,849

eRNA loci associated with any of the clinical outcomes (q <0.05) is provided in our data portal.

Analysis of eRNA-Locus/Gene Co-expression and 3D Chromatin Interactions
We calculated the co-expression patterns between each eRNA-gene pair across the 32 cancer types and selected those that were

consistently co-expressed/reversed in at least 3 cancer types. In each cancer type, we required a p-value with Bonferroni correction
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to be <0.01 and an absolute Spearman’s Rho to be >0.3. We observed�161 million eRNA-gene pairs meeting these criteria, among

which 72.1% were positively co-expressed. We applied the same cutoffs to the protein-coding genes across the 32 cancer types to

identify �63 million gene-gene interactions, of which about half (55%) were positive correlations. From 3D Genome Browser (Wang

et al., 2018), we then obtained the HiC chromatin loops calculated by Peakachu (https://github.com/tariks/peakachu) from 56 HiC

datasets. We compared the HiC loops with the co-expressed eRNA-gene pairs and selected 32,298 pairs connected by at least

one loop in any of the 56 HiC profiles, of which 96.6% were positively co-expressed (Figures S7D–S7H).
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Figure S1. The cross-sample correlation between eRNA expression and H3K27ac level, 
Related to Figure 1 



(A, B) Correlations between H3K27ac modification level and eRNA expression (RPKM) were 
calculated for each of the 1,531 core super-enhancers in the ENCODE database (A) and the 
cistrome database (B). (C) Scatter plot of the 1,531 pairs of Spearman’s Rhos in A (x-axis) and B 
(y-axis). The p-value indicates the significance of Pearson’s R. (D) For each super-enhancer, we 
combined the p-values from the two datasets using Fisher’s method before subjecting them to a q-
value calculation. Distribution of q-values indicates the estimated pi0, the percentage of true null 
H0 (no positive correlation between H3K27ac and eRNA for the super-enhancer studied). Pi0 was 
calculated using Storey’s q-value. We also calculated pi0 using Phison’s LFDR and Nettleton's 
method to estimate the error of pi0 computation. Pi0 was estimated to be 19% ± 3.5%.  
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Figure S2. The eRNA expression profile of a super-enhancer region chr3:50,265,725-
50,266,396, Related to Figure 2 
(A) The super-enhancer status of chr3:50265725-50266396 in the original 86 tissue and cell types. 
(B) The eRNA expression in 28 cancer types not included in Figure 1A. (C) The H3K27ac and 
H3K4me1 status of chr3:50265725-50266396 and its flanking 3 kb regions in 7 ENCODE cell 
lines. (D) The t-SNE plot of the eRNA expression in the 32 TCGA cancer types and 31 GTEx 
normal tissues. (E) Each grey point represents the average RPKM on chr3:50,265,725-50,266,396 
in one of the 32 TCGA cancer types or 31 GTEx body tissues. The median and SE of the indicated 
group of samples are highlighted in black. 
  



 
 
Figure S3. Recurrent eRNA expression peaks in super-enhancers, Related to Figure 3 
(A) Estimated FDR of peak detection when an eRNA peak is observed in the indicated number of 
cancer types. The RNA-seq reads mapped to the core super-enhancer regions in each cancer type 



were randomly reshuffled before the same peak identification procedure was performed to estimate 
the number of peaks generated by transcription noise. FDR was then estimated by comparing the 
RPKM of peaks identified using permutated reads or real data (see Online Methods). (B, C) are 
the same as in Figure 3A, except that the search range for local maximum RPKMs was extended 
to 400 bp (B) or 600 bp (C). (D, E) are the same as in Figure 3B, except that the search range for 
local maximum RPKMs was extended to 400 bp (D) or 600 bp (E). (F) The enrichment of splicing 
factor binding motifs near the exon-intron (or intron-exon) junctions for protein-coding genes. 
Five splicing factors with p<1×10-4 and fold enrichment >3 are plotted. (G) The same analysis as 
in F, except that the 200 bp flanking sequences of 29,828 super-enhancer peaks were used. The 
same five splicing factors in F are displayed. Notably, the first 20 and last 20 bps were not included 
in enrichment analysis since SFmap requires at least 20 bp sequences for motif searching.  
  



 



Figure S4. Nucleosome positioning around the super-enhancer eRNA peaks, Related to Figure 
4 
(A) Principal component analysis (PCA) on the genome-wide nucleosome profiles of 29 human 
tissue/cell types. The PC1 and PC2 explain 33.7% and 12.5% variations, respectively. (B) The 
nucleosome positioning in the flanking 2 kb region of the 29,828 super-enhancer peaks in the 27 
human tissue/cell types. The calculation is the same as in Figure 4A (top panel), except that the 
surveyed region was extended to 2 kb on each side, and the signal for each tissue is plotted 
separately.  
  



 
 
Figure S5. Nucleosomes positioned near the eRNA peaks in super-enhancers, Related to Figure 
5 
(A, B, and C) 3D scatterplots of the PCA result shown in Figure 5A, except that the data points 
are visualized from different angles. Only the first 10,000 points of the ~4 million peaks are 
plotted. (D, E, and F) Scatterplot of PC1, PC2, and PC3 versus the median number of MNase-seq 
reads mapped to the flanking 140 bp DNA of the ~4 million loci of the local maximum eRNA 
RPKMs. (G) Scatterplot of PC2 versus PC3 for the ~4 million loci. (H) PC3 represents the phase 



difference between eRNA expression and the local nucleosome positioning. The ~4 million loci 
were evenly divided into 20 quantiles according to the PC3 (from negative/green to positive/grey). 
For each quantile, the 280 bp sequences were aligned with the loci of the local maximum eRNA 
RPKMs at the center (0 bp). Each point represents a 10 bp window. The mean number of mapped 
MNase-seq reads was calculated for all 10 bp windows with the same relative positions. The 
resulting mean signals were normalized into relative nucleosome occupancies (y-axis) by dividing 
them with the minimum values of the 280 bp sequence. (I) same as H, except that the quantile of 
PC2 was considered (form negative/blue to positive/red). (J) The occurrence of the ~4 million loci 
being identified as the local maximum PPKM in the 32 TCGA cancer types. (K) The occurrence 
of the 302,951 peaks with PC3<0 and relative height >0.05 in the 32 TCGA cancer types. (L) The 
occurrence of all protein-coding genes expressed in the 32 TCGA cancer types. A gene is defined 
as expressed in a cancer type if it has an RSEM>10 in >10% of the tumors of that cancer type. (M) 
The density of transcriptional peaks with PC3<0 and relative height >0.05 in different genomic 
regions. We divided the human genome into non-overlapping 1 kb fragments and called the 
average intensities of the indicated markers in each fragment from all the ENCODE bigwig files 
available in the ENCODE portal. For each marker, we selected fragments with signals larger than 
2-fold of the corresponding input and with no significant signal (1-fold) observed for any other 
markers. These regions were subjected to transcription peak identification using the same criterion 
defining the 302,951 super-enhancer eRNA loci. Peak density was counted as the number of peaks 
per 1 kb genomic DNA.  
  



Figure S6. Comparison of eRNA loci identified using RNA-seq with FANTOM enhancers, 
Related to Figure 5 
(A, B) The FANTOM CAGE-seq signals on the Watson strand (A) and Crick strand (B) of the 
genomic DNA flanking the eRNA loci identified in this study. The FANTOM enhancer CAGE-
seq reads were mapped to the human genome, and the nucleotide at the 5´ end of each mapped 
read was considered the start of an eRNA transcript. The 302,951 super-enhancer eRNA loci and 
their flanking 1 kb DNA were aligned with the eRNA peaks at the center. Each point represents a 
10 bp window with indicated distance to the eRNA loci. The total number of eRNA start sites 
detected by CAGE-seq in all 10 bp windows with the same relative positions was counted and the 
average of super-enhancer regions. (C) The percentage of eRNA loci with at least one enhancer 
FANTOM CAGE-seq read mapped to its up-stream -90 to -10 bp on either strand. The reshuffled 
result is based on when all eRNA loci were randomly assigned to the human genome. Each error 
bars represent one standard error of the indicated percentage estimated using the binomial 
distribution. (D) The same as in C, except the input FANTOM CAGE-seq reads were down-

s



sampled to the indicated number. (E) The percentage of eRNA loci with well-position 
nucleosomes detected in their ± 20 bp region in ³5 of the 15 paired-end MNase-seq profiles using 
DANPOS2.0. The background was calculated by randomly assigning the eRNAs on the human 
genome. (F) The number of eRNA loci with nucleosome occupancy in >5 tissues. The background 
was calculated by randomly shuffled eRNA loci. Each error bar represents one standard error of 
the mean. 
 
  



 



Figure S7. The genomic distribution and molecular function of the 164 eRNA loci, Related to 
Figure 6 
(A) The genomic distribution of the 164 eRNA loci (red dots) differentially expressed in a cohort 
of 28 melanoma patients receiving anti-PD1 immunotherapy and of the 36 genes targeted by 
eQTLs in the 164 eRNA loci. (B) The RPKM of the 164 eRNAs in primary T-cells, GTEx normal 
tissues, and CCLE cancer cell lines. For GTEx and CCLE data, each column represents the mean 
of all samples/cell-lines of the indicated tissue of origin. (C, D) Correlation between the T-cell 
dysfunction signature and CAF function signature from the TIDE database and the sum of 
log2RPKM of the 164 eRNA loci in a cohort of 310 TCGA melanoma samples. The p-values 
indicate the significance of Pearson’s correlation coefficients.  (E) The direction of eRNA-gene 
co-expression. An eRNA-gene pair or gene-gene pair was considered as co-expressed if they 
consistently co-expressed/reversed in at least 3 cancer types. In each cancer type, we required a p-
value with Bonferroni correction to be <0.01 and an absolute Spearman’s Rho to be >0.3. Each 
error bars represent one standard error of the indicated percentage estimated using the binomial 
distribution. (F) The probability of any possible eRNA-gene pair or gene-gene pair to be co-
expressed when they are at an indicated distance. The probability for pairs located on different 
chromosomes was used as the background for normalization. (G) The number of co-expressed 
eRNA-gene pairs connected by Hi-C loops in 3D Genome Browser (n = 32,298). The distribution 
of the expected number was calculated by randomly assigning the eRNAs to the human genome 
10,000 times. (H) The distribution of the genomic distance between any eRNA and its partner gene 
in the 32,298 pairs.  
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